小智贝文库 :专注文档资料8年,极速海量,用心打造! 首页 |注册 |登录 |帮助

教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作

计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案

当前位置: 小智贝文库中小学教学小升初小升初数学小升初数学知识点17道典型题带你攻克小升初行程问题

17道典型题带你攻克小升初行程问题

[10-15 23:18:35]   来源:http://www.xiaozhibei.com  小升初数学知识点   阅读:9394

【编者按】www.xiaozhibei.com英语四六级频道为大家收集整理了“17道典型题带你攻克小升初行程问题”供大家参考,希望对大家有所帮助!

行程问题是各大杯赛中必考的知识点,也是令无数同学望而生畏的一个难点,建议各位同学在复习行程问题的时候切忌一味钻研偏题怪题,攻克每个行程专题中的最典型题目,将整个行程体系建立起来才是王道,在这里徐老师给大家总结了每个专题中的最典型题目,抛砖引玉,通过一道典型题的学习带大家复习相应模块的核心知识。

一、相遇与追及

1、路程和路程差公式

【例1】某城市东西路与南北路交会于路口.甲在路口南边560米的点,乙在路口.甲向北,乙向东同时匀速行走.4分钟后二人距的距离相等.再继续行走24分钟后,二人距的距离恰又相等.问:甲、乙二人的速度各是多少?

2、多人相遇

【例2】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇.那么,东、西两村之间的距离是多少米?

3、多次相遇

【例3】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?

二、典型行程专题

1、火车过桥

【例4】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?

2、流水行船

【例5】甲、乙两艘游艇,静水中甲艇每小时行千米,乙艇每小时行千米.现在甲、乙两游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距27千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地.水流速度是多少?

3、猎狗追兔

www.xiaozhibei.com

【例6】猎人带猎狗去捕猎,发现兔子刚跑出40米,猎狗去追兔子。已知猎狗跑2步的时间兔子跑3步,猎狗跑4步的距离与兔子跑7步的距离相等,求兔子再跑多远,猎狗可以追上它?

4、环形跑道

【例7】甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇。求此圆形场地的周长?

5、走停问题

【例8】小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的2倍,如果上山用了3时50分,那么下山用了多少时间?

6、变速问题

【例9】(时间相同模型)甲、乙两车分别从、两地同时出发,相向而行.出发时,甲,乙的速度之比是,相遇后甲的速度减少,乙的速度增加.这样当甲到达地时,乙离地还有千米.那么、两地相距多少千米?

【例10】(路程相同模型)一列火车出发1小时后因故停车0.5小时,然后以原速的3/4前进,最终到达目的地晚1.5小时.若出发1小时后又前进90公里再因故停车0.5小时,然后同样以原速的3/4前进,则到达目的地仅晚1小时,那么整个路程为多少公里?

7、自动扶梯

【例11】小志与小刚两个孩在电梯上的行走速度分别为每秒个台阶和每秒个台阶,电梯运行后,他俩沿电梯运行方向的相同方向从一楼走上二楼,分别用时秒和秒,那么如果小志攀登静止的电梯需要用时多少秒?

8、发车间隔

【例12】某人沿着电车道旁的便道以每小时千米的速度步行,每分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少?电车之间的时间间隔是多少?

9、接送问题

【例13】甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.

10、钟表问题

【例14】小红在9点与10点之间开始解一道数学题,当时时针和分针正好成一条直线,当小红解完这道题时,时针和分针刚好第一次重合,小红解这道题用了多少时间?

三、综合行程(主要运用比例法)

【例15】A、B两地相距7200米,甲、乙分别从A,B两地同时出发,结果在距B地2400米处相遇.如果乙的速度提高到原来的3倍,那么两人可提前10分钟相遇,则甲的速度是每分钟行多少米?

【例16】甲、乙两人同时同地同向出发,沿环形跑道匀速跑步.如果出发时乙的速度是甲的倍,当乙第一次追上甲时,甲的速度立即提高,而乙的速度立即减少,并且乙第一次追上甲的地点与第二次追上甲的地点相距100米,那么这条环形跑道的周长是多少米?

【例17】A、B两地位于同一条河上,B地在A地下游100千米处.甲船从A地、乙船从B地同时出发,相向而行,甲船到达B地、乙船到达A地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是多少?

标签: 暂无联系方式 小升初数学知识点

相关文章