-
教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作
计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案
-
2016初中七下数学暑假作业
[10-15 23:18:35] 来源:http://www.xiaozhibei.com 初一数学暑假作业 阅读:9821次解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.
21.(6分)学着说点理,填空:
如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.
理由如下:
∵AD⊥BC于D,EG⊥BC于G,(已知)
∴∠ADC=∠EGC=90°,( 垂直定义 )
∴AD∥EG,( 同位角相等,两直线平行 )
∴∠1=∠2,( 两直线平行,内错角相等 )
∠E=∠3,(两直线平行,同位角相等)
又∵∠E=∠1(已知)
∴ ∠2 = ∠3 (等量代换)
∴AD平分∠BAC( 角平分线定义 )
考点: 平行线的判定与性质.
专题: 推理填空题.
分析: 根据垂直的定义及平行线的性质与判定定理即可证明本题.
解答: 解:∵AD⊥BC于D,EG⊥BC于G,(已知)
∴∠ADC=∠EGC=90°,(垂直定义)
∴AD∥EG,(同位角相等,两直线平行)
∴∠1=∠2,(两直线平行,内错角相等)
∠E=∠3,(两直线平行,同位角相等)
又∵∠E=∠1(已知)
∴∠2=∠3(等量代换)
∴AD平分∠BAC(角平分线定义 ).
点评: 本题考查了平行线的判定与性质,属于基础题,关键是注意平行线的性质和判定定理的综合运用.
标签: 暂无联系方式 初一数学暑假作业
相关文章