-
教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作
计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案
-
初一(七年级)数学暑假作业答案
[10-15 23:24:09] 来源:http://www.xiaozhibei.com 初一数学暑假作业 阅读:9951次为了不让大家因假期而和其他同学拉下差距,小编特地为大家准备了这篇初一(七年级)数学暑假作业答案,希望你们能时刻记住自己的主要任务还是学习。
一、选择题(4分×8=32分,下面每小题给出的四个选项中,只有一个是正确的)
1.(4分)确定平面直角坐标系内点的位置是( )
A. 一个实数 B. 一个整数 C. 一对实数 D. 有序实数对
考点: 坐标确定位置.
分析: 比如实数2和3并不能表示确定的位置,而有序实数对(2,3)就能清楚地表示这个点的横坐标是2,纵坐标是3.
解答: 解:确定平面直角坐标系内点的位置是有序实数对,故选D.
点评: 本题考查了在平面直角坐标系内表示一个点要用有序实数对的概念.
2.(4分)下列方程是二元一次方程的是( )
A. x2+x=1 B. 2x+3y﹣1=0 C. x+y﹣z=0 D. x+ +1=0
考点: 二元一次方程的定义.
分析: 根据二元一次方程的定义进行分析,即只含有两个未知数,未知数的项的次数都是1的整式方程.
解答: 解:A、x2+x=1不是二元一次方程,因为其最高次数为2,且只含一个未知数;
B、2x+3y﹣1=0是二元一次方程;
C、x+y﹣z=0不是二元一次方程,因为含有3个未知数;
D、x+ +1=0不是二元一次方程,因为不是整式方程.
故选B.
点评: 注意二元一次方程必须符合以下三个条件:
(1)方程中只含有2个未知数;
(2)含未知数项的最高次数为一次;
(3)方程是整式方程.
3.(4分)已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是( )
A. (﹣3,4) B. (3,4) C. (﹣4,3) D. (4,3)
考点: 点的坐标.
分析: 根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.
解答: 解:∵P点位于y轴右侧,x轴上方,
∴P点在第一象限,
又∵P点距y轴3个单位长度,距x轴4个单位长度,
∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选B.
点评: 本题考查了点的位置判断方法及点的坐标几何意义.
4.(4分)将下列长度的三条线段首尾顺次相接,能组成三角形的是( )
A. 4cm,3cm,5cm B. 1cm,2cm,3cm C. 25cm,12cm,11cm D. 2cm,2cm,4cm
考点: 三角形三边关系.
分析: 看哪个选项中两条较小的边的和大于最大的边即可.
解答: 解:A、3+4>5,能构成三角形;
B、1+2=3,不能构成三角形;
C、11+12<25,不能构成三角形;
D、2+2=4,不能构成三角形.
故选A.
点评: 本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和小于最大的数就可以.
5.(4分)关于x的方程2a﹣3x=6的解是非负数,那么a满足的条件是( )
A. a>3 B. a≤3 C. a<3 D. a≥3
考点: 一元一次方程的解;解一元一次不等式.
分析: 此题可用a来表示x的值,然后根据x≥0,可得出a的取值范围.
解答: 解:2a﹣3x=6
x=(2a﹣6)÷3
又∵x≥0
∴2a﹣6≥0
∴a≥3
故选D
点评: 此题考查的是一元一次方程的根的取值范围,将x用a的表示式来表示,再根据x的取值判断,由此可解出此题.
6.(4分)学校计划购买一批完全相同的正多边形地砖铺地面,不能进行镶嵌的是( )
A. 正三角形 B. 正四边形 C. 正五边形 D. 正六边形
考点: 平面镶嵌(密铺).
专题: 几何图形问题.
分析: 看哪个正多边形的位于同一顶点处的几个内角之和不能为360°即可.
解答: 解:A、正三角形的每个内角为60°,6个能镶嵌平面,不符合题意;
B、正四边形的每个内角为90°,4个能镶嵌平面,不符合题意;
C、正五边形的每个内角为108°,不能镶嵌平面,符合题意;
D、正六边形的每个内角为120°,3个能镶嵌平面,不符合题意;
故选C.
点评: 考查一种图形的平面镶嵌问题;用到的知识点为:一种正多边形镶嵌平面,正多边形一个内角的度数能整除360°.
7.(4分)下面各角能成为某多边形的内角的和的是( )
A. 270° B. 1080° C. 520° D. 780°
考点: 多边形内角与外角.
分析: 利用多边形的内角和公式可知,多边形的内角和是180度的整倍数,由此即可找出答案.
解答: 解:因为多边形的内角和可以表示成(n﹣2)•180°(n≥3且n是整数),则多边形的内角和是180度的整倍数,
在这四个选项中是180的整倍数的只有1080度.
故选B.
点评: 本题主要考查了多边形的内角和定理,是需要识记的内容.
www.xiaozhibei.com8.(4分)(2002•南昌)设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,情况如图所示,那么“■”“▲”“●”这三种物体按质量从大到小的排列顺序为( )
A. ■●▲ B. ■▲● C. ▲●■ D. ▲■●
考点: 一元一次不等式的应用.
专题: 压轴题.
分析: 本题主要通过观察图形得出“■”“▲”“●”这三种物体按质量从大到小的排列顺序.
解答: 解:因为由左边图可看出“■”比“▲”重,
由右边图可看出一个“▲”的重量=两个“●”的重量,
所以这三种物体按质量从大到小的排列顺序为■▲●,
故选B.
点评: 本题主要考查一元一次不等式的应用,解题的关键是利用不等式及杠杆的原理解决问题.
二、填空题
9.(3分)已知点A(1,﹣2),则A点在第 四 象限.
考点: 点的坐标.
分析: 根据各象限内点的坐标特征解答.
解答: 解:点A(1,﹣2)在第四象限.
故答案为:四.
点评: 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
10.(3分)如图,直角三角形ACB中,CD是斜边AB上的中线,若AC=8cm,BC=6cm,那么△ACD与△BCD的周长差为 2 cm,S△ADC= 12 cm2.
考点: 直角三角形斜边上的中线.
分析: 过C作CE⊥AB于E,求出CD= AB,根据勾股定理求出AB,根据三角形的面积公式求出CE,即可求出答案.
解答: 解:过C作CE⊥AB于E,
∵D是斜边AB的中点,
∴AD=DB= AB,
∵AC=8cm,BC=6cm
标签: 暂无联系方式 初一数学暑假作业
相关文章