小智贝文库 :专注文档资料8年,极速海量,用心打造! 首页 |注册 |登录 |帮助

教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作

计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案

当前位置: 小智贝文库中小学教学中考复习中考数学中考数学模拟题2016年中考数学四边形(正方形)模拟月考试卷

2016年中考数学四边形(正方形)模拟月考试卷

[10-15 23:19:20]   来源:http://www.xiaozhibei.com  中考数学模拟题   阅读:9706

摘要:为了丰富同学们的复习生活,在复习中寻找到适合自己的复习方法,www.xiaozhibei.com为大家分享了最新一年数学初三月考试卷,供大家参考!

35、(最新一年•呼和浩特)如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,

(1) 的值为   ;

(2)求证:AE=EP;

(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.

考点: 正方形的性质;全等三角形的判定与性质;平行四边形的判定.3718684

分析: (1)由正方形的性质可得:∠B=∠C=90°,由同角的余角相等,可证得:∠BAE=∠CEF,根据同角的正弦值相等即可解答;

(2)在BA边上截取BK=NE,连接KE,根据角角之间的关系得到∠AKE=∠ECP,由AB=CB,BK=BE,得AK=EC,结合∠KAE=∠CEP,证明△AKE≌△ECP,于是结论得出;

(3)作DM⊥AE于AB交于点M,连接ME、DP,易得出DM∥EP,由已知条件证明△ADM≌△BAE,进而证明MD=EP,四边形DMEP是平行四边形即可证出.

解答: (1)解:∵四边形ABCD是正方形,

∴∠B=∠D,

∵∠AEP=90°,

∴∠BAE=∠FEC,

在Rt△ABE中,AE= = ,

∵sin∠BAE= =sin∠FEC= ,

∴ = ,

(2)证明:在BA边上截取BK=NE,连接KE,

∵∠B=90°,BK=BE,

∴∠BKE=45°,

∴∠AKE=135°,

∵CP平分外角,

∴∠DCP=45°,

∴∠ECP=135°,

∴∠AKE=∠ECP,

∵AB=CB,BK=BE,

∴AB﹣BK=BC﹣BE,

即:AK=EC,

易得∠KAE=∠CEP,

∵在△AKE和△ECP中,

∴△AKE≌△ECP(ASA),

∴AE=EP;

(3)答:存在.

证明:作DM⊥AE于AB交于点M,

则有:DM∥EP,连接ME、DP,

∵在△ADM与△BAE中,

∴△ADM≌△BAE(AAS),

∴MD=AE,

∵AE=EP,

∴MD=EP,

∴MD EP,

∴四边形DMEP为平行四边形.

点评: 此题考查了相似三角形的判定与性质,全等三角形的判定与性质以及正方形的性质等知识.此题综合性很强,图形比较复杂,解题的关键是注意数形结合思想的应用与辅助线的准确选择.

36、(最新一年泰安)如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过点C,一次函数y=ax+b的图象经过点A,

(1)求反比例函数与一次函数的解析式;

(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.

考点:反比例函数与一次函数的交点问题.

分析:(1)先根据正方形的性质求出点C的坐标为(5,﹣3),再将C点坐标代入反比例函数y=中,运用待定系数法求出反比例函数的解析式;同理,将点A,C的坐标代入一次函数y=ax+b中,运用待定系数法求出一次函数函数的解析式;

(2)设P点的坐标为(x,y),先由△OAP的面积恰好等于正方形ABCD的面积,列出关于x的方程,解方程求出x的值,再将x的值代入y=﹣ ,即可求出P点的坐标.

解答:解:(1)∵点A的坐标为(0,2),点B的坐标为(0,﹣3),

∴AB=5,

∵四边形ABCD为正方形,

∴点C的坐标为(5,﹣3).

∵反比例函数y=的图象经过点C,

∴﹣3=,解得k=﹣15,

∴反比例函数的解析式为y=﹣ ;

∵一次函数y=ax+b的图象经过点A,C,

∴ ,

解得 ,

∴一次函数的解析式为y=﹣x+2;

(2)设P点的坐标为(x,y).

∵△OAP的面积恰好等于正方形ABCD的面积,

∴×OA•|x|=52,

∴×2|x|=25,

解得x=±25.

当x=25时,y=﹣ =﹣;

当x=﹣25时,y=﹣ =.

∴P点的坐标为(25,﹣)或(﹣25,).

点评:本题考查了正方形的性质,反比例函数与一次函数的交点问题,运用待定系数法求反比例函数与一次函数的解析式,三角形的面积,难度适中.运用方程思想是解题的关键.

37、(最新一年•资阳)在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.

(1)如图1,当点M与点C重合,求证:DF=MN;

(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以 cm/s速度沿AC向点C运动,运动时间为t(t>0);

①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.

②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.

www.xiaozhibei.com

考点: 四边形综合题

分析: (1)证明△ADF≌△DNC,即可得到DF=MN;

(2)①首先证明△AFE∽△CDE,利用比例式求出时间t= a,进而得到CM= a= CD,所以该命题为真命题;

②若△MNF为等腰三角形,则可能有三种情形,需要分类讨论.

解答: (1)证明:∵∠DNC+∠ADF=90°,∠DNC+∠DCN=90°,

∴∠ADF=∠DCN.

在△ADF与△DNC中,

∴△ADF≌△DNC(ASA),

∴DF=MN.

(2)解:①该命题是真命题.

理由如下:当点F是边AB中点时,则AF= AB= CD.

∵AB∥CD,∴△AFE∽△CDE,

∴ ,

∴AE= EC,则AE= AC= a,

∴t= = a.

则CM=1•t= a= CD,

∴点M为边CD的三等分点.

②能.理由如下:

易证AFE∽△CDE,∴ ,即 ,得AF= .

易证△MND∽△DFA,∴ ,即 ,得ND=t.

∴ND=CM=t,AN=DM=a﹣t.

若△MNF为等腰三角形,则可能有三种情形:

(I)若FN=MN,则由AN=DM知△FAN≌△NDM,

∴AF=DM,即 =t,得t=0,不合题意.

∴此种情形不存在;

(II)若FN=FM,由MN⊥DF知,HN=HM,∴DN=DM=MC,

∴t= a,此时点F与点B重合;

(III)若FM=MN,显然此时点F在BC边上,如下图所示:

易得△MFC≌△NMD,∴FC=DM=a﹣t;

又由△NDM∽△DCF,∴ ,即 ,∴FC= .

∴ =a﹣t,

∴t=a,此时点F与点C重合.

综上所述,当t=a或t= a时,△MNF能够成为等腰三角形.

点评: 本题是运动型几何综合题,考查了相似三角形、全等三角形、正方形、等腰三角形、命题证明等知识点.解题要点是:(1)明确动点的运动过程;(2)明确运动过程中,各组成线段、三角形之间的关系;(3)运用分类讨论的数学思想,避免漏解.

38、(最新一年杭州压轴题)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.

[1] [2]  下一页

标签: 暂无联系方式 中考数学模拟题

相关文章