-
教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作
计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案
-
2016年全国各地中考数学开放探索型问题试题整理汇集
[10-15 23:19:20] 来源:http://www.xiaozhibei.com 初三数学试卷 阅读:9289次(3)BD、EF是平行四边形的邻边,分点E在线段AC和线段AC(或CA)延长线上两种可能来考虑。BD长可求,EF=BD,点F和点E横坐标相同,点F纵坐标等于点E纵坐标加(或减)BD长度,设点E(x,y),则点F坐标(x,y+3),代入抛物线表达式可求解;
(4)作CQ⊥x轴于Q,作PG⊥x轴,交AC于H,则点H和点P横坐标相同,设二者横坐标为x,根据直线与抛物线表达式可用分别表示出相应纵坐标,进而用x表示PH的长度,根据△PAC面积等于 PH×AQ(AQ为定值)可讨论其最值。
【答案】解:设直线AC的解析式为:y=kx+n,点 A(-1,0),C(2,3)在A\C上,可得:
解得:k=1,n=1
∴AC的解析式为:y=x+1;
把A(-1,0),C(2,3)y=-x2+bx+c
解得b=2,c=3,
∴抛物线的解析式为y= -x2+2x+3,
∴N(0,3)D(1,4).
(2) 作N关于x=3的对称点N1,连接DN1,则N1(6,3).设直线D N1的解析式为y=px+q,则有:
,∴p= ,q= ,∴D N1的解析式y= x+ ,当M(3,m)在D N1上时,MN+MD的值最小,∴m= ×3+ = ;
(3)易知B(1,2),又D(1,4)∴BD=2.因为点E在AC上,设点E(x,x+1),
1°当点E在线段AC上时,点F(x.x+3),代入y= -x2+2x+3,得x+3=-x2+2x+3,
解得x=0或=1(不符合题意舍去),∴E;
2°当点E在线段AC(或CA)延长线上时,点F(x.x-1),代入y= -x2+2x+3,得x-1=-x2+2x+3,解得x= ,所以E( , )E( , )
综上所述,当点E(0, 1)、( , )或( , )时以B、D、E、F为顶点的四边形能否为平行四边形;
(4)作CQ⊥x轴于Q,作PG⊥x轴,交AC于H。
设H(x,x+1),则P(x, -x2+2x+3),所以PH=(-x2+2x+3)-(x+1)= -x2+ x+2,
又∵S△PAB=S△PAH+ S△PBH= PH×AQ= (-x2+ x+2)×3= (x- )2+ ,
∴△APC面积的最大值是 。
的交点可得m的值;
【点评】本题是存在性探索性问题,在解决这一类存在性探索问题时主要应注意:首先假定这个数学对象已经存在,根据数形结合的思想,将其构造出来;然后再根据已知条件与有关性质一步步地进行探索,如果探索出与条件相符的结果,就肯定存在,否则不存在,探索过程就是理由.本题主要考查了用待定系数法求解析式、勾股定理、解方程组等,用到的数学数学有函数思想、方程思想、数形结合思想、对称思想、分类讨论思想等,题目综合性强、难度大,但是考查的知识面较广,是一个区分度很大题目。
28.(2012湖南衡阳市,28,10)如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O)
(1)求此抛物线的解析式.
(2)过点P作CB所在直线的垂线,垂足为点R,
①求证:PF=PR;
②是否存在点P,使得△PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由;
③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断△RSF的形状.
解析:(1)根据题意能判断出点O是矩形ABCD的对角线交点,因此D、B关于原点对称,A、B关于x轴对称,得到A、D的坐标后,利用待定系数法可确定抛物线的解析式.
(2)①首先根据抛物线的解析式,用一个未知数表示出点P的坐标,然后表示出PF、RF的长,两者进行比较即可得证;
②首先表示RF的长,若△PFR为等边三角形,则满足PF=PR=FR,列式求解即可;
③根据①的思路,不难看出QF=QS,若连接SF、RF,那么△QSF、△PRF都是等腰三角形,先用∠SQF、∠RPF表示出∠DFS、∠RFP的和,用180°减去这个和值即可判断出△RSF的形状.
答案:解:(1)∵抛物线的顶点为坐标原点,
∴A、D关于抛物线的对称轴对称;
∵E是AB的中点,
∴O是矩形ABCD对角线的交点,又B(2,1)
∴A(2,﹣1)、D(﹣2,﹣1);
由于抛物线的顶点为(0,0),可设其解析式为:y=ax2,则有:
4a=﹣1,a=﹣
∴抛物线的解析式为:y=﹣ x2.
(2)①证明:由抛物线的解析式知:P(a,﹣ a2),而R(a,1)、F(0,﹣1),则:
则:PF= = = a2+1,PR= = a2+1.
∴PF=PR.
②由①得:RF= ;
若△PFR为等边三角形,则RF=PF=FR,得:
= a2+1,即: a4﹣ a2﹣3=0,得:
a2=﹣4(舍去),a2=12;
∴a=±2 ,﹣ a2=﹣3;
∴存在符合条件的P点,坐标为(2 ,﹣3)、(﹣2 ,3).
③同①可证得:QF=QS;
在等腰△SQF中,∠1= (180°﹣∠SQF);
同理,在等腰RPF中,∠2= (180°﹣∠RPF);
∵QS⊥BC、PR⊥BC,
∴QS∥PR,∠SQP+∠RPF=180°
∴∠1+∠2= (360°﹣∠SQF﹣∠RPF)=90°
∴∠SFR=180°﹣∠1﹣∠2=90°,即△SFR是直角三角形.
点评:该题考查了二次函数的性质及解析式的确定、矩形的性质、特殊三角形的判定等知识,综合性较强.在答案题目时,要注意数形结合,并灵活应用前面小题中证得的结论
27. (2012贵州省毕节市,27,16分)如图,直线 1经过点A(-1,0),直线 2经过点B(3,0), 1、 2均为与 轴交于点C(0, ),抛物线 经过A、B、C三点.
(1)求抛物线的函数表达式;
(2)抛物线的对称轴依次与 轴交于点D、与 2交于点E、与抛物线交于点F、与 1交于点G。求证:DE=EF=F G;
(3)若 1⊥ 2于 轴上的C点处,点P为抛物线上一动点,要使△PCG为等腰三角形,请写出符合条件的点P的坐标,并简述理由。
解析:(1)已知A、B、C三点坐标,利用待定系数法求出
抛物线的解析式;
(2)D、E、F、G四点均在对称轴x=1上,只要分别求出
其坐标,就可以得到线段DE、EF、FG的长度.D是对称
轴与x轴交点,F是抛物线顶点,其坐标易求;E是对称轴
与直线l2交点,需要求出l2的解析式,G是对称轴与l1的交
点,需要求出l1的解析式,而A、B、C三点坐标已知,所
以l1、l2的解析式可以用待定系数法求出.至此本问解决;
(3)△PCG为等腰三角形,需要分三种情况讨论.如解答图所示,在解答过程中,充分注意到△ECG为含30度角的直角三角形,△P1CG为等边三角形,分别利用其几何性质,则本问不难解决.
解答:解(1)依题意,得.
, 解得
∴抛物线的函数表达式是y= x2- x- ;
(2)∵直线l1经过点A(-1,0),C(0,- ),∴直线l1的函数表达式为y1=- x- .
∵直线l2经过点B(3,0),C(0- ),∴直线l2的函数表达式为y2= x- .
又∵抛物线的对称轴是x=1,∴点D的坐标为(1,0),点E的坐标为(1,- ),
点F的坐标为(1,- ),点G的坐标为(1,-2 ).∴DE=EF=FG= ;
(3)P点的坐标为:P1(2,- ),P2(1, ).
理由:分三种情况:
①以G点为圆心,GC长为半径作弧,交抛物线于点C和点P1,连结CP1、GP1,所以GC=GP1.由等腰三角形的三线合一性质(或抛物线的对称性)可知点P1与点C关于直线x=1对称,所以点P1的坐标为(2,- );
②以点C为圆心,CG长为半径作弧,因为∠CGF=30°,所以∠CGP1=60°,即△CGP1是等边三角形,又因为AC=CG=2,所以作出的弧与抛物线交于点A和点P1,但A、C、G在同一条直线上,不能组成三角形.
标签: 暂无联系方式 初三数学试卷
相关文章
- 上一篇:2016部分地区中考数学图表信息试题(附答案)
- › 2016年高考地理复习:黄山与庐山简答题答题思路
- › 2016年高考历史备考:中外历史年事时间表
- › 2016年福建高考历史考试说明:部分考点有变化
- › 2016高考历史核心必考点:历史事件的巧记
- › 2016年高考历史复习:西周时期的政治制度
- › 2016高考生物高中生物知识点:光合作用
- › 2016年高考生物必备考点:生物的呼吸作用
- › 2016高考化学一轮复习:实验类试题
- › 2016高考备考:物理选择题轻松拿分的方法
- › 2016年高考物理命题趋势预测及指导
- › 2016年高考物理常用公式:恒定电流公式
- › 2016年高考物理三大题型试题解析