-
教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作
计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案
-
2016年湖北图形的变换中考数学试题分类解析
[10-15 23:09:35] 来源:http://www.xiaozhibei.com 初三数学试卷 阅读:9677次【分析】∵正△ABC,∴AB=CB,∠ABC=600。
∵线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,∴BO=BO′,∠O′AO=600。
∴∠O′BA=600-∠ABO=∠OBA。∴△BO′A≌△BOC。
∴△BO′A可以由△BOC绕点B逆时针旋转60°得到。故结论①正确。
连接OO′,
∵BO=BO′,∠O′AO=600,∴△OBO′是等边三角形。∴OO′=OB=4。故结论②正确。
∵在△AOO′中,三边长为O′A=OC=5,OO′=OB=4,OA=3,是一组勾股数,
∴△AOO′是直角三角形。
∴∠AOB=∠AOO′+∠O′OB =900+600=150°。故结论③正确。
。故结论④错误。
如图所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,
点O旋转至O″点.
易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的
直角三角形。
则 。
故结论⑤正确。
综上所述,正确的结论为:①②③⑤。故选A。
15. (2012湖北孝感3分)几个棱长为1的正方体组成的几何体的三视图如下图所示,则这个几何体的体积是【 】
A.4 B.5 C.6 D.7
【答案】B。
【考点】由三视图判断几何体。
【分析】综合三视图可知,这个几何体共有两行三列,它的下层应该有3+1=4个小正方体,上层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个。所以这个几何体的体积是5。故选B。
16. (2012湖北襄阳3分)如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是【 】
A. B. C. D.
【答案】B。
【考点】简单组合体的三视图。1028458
【分析】主视图是从正面看得到的视图,从正面看上面圆锥看见的是:三角形,下面两个正方体看见的是两个正方形。故选B。
17. (2012湖北鄂州3分)如左下图是一个由多个正方体堆积而成的几何体俯视图。图中所示数字为该小
正方体的个数,则这个几何体的左视图是【 】
【答案】D。
【考点】由三视图判断几何体,简单组合体的三视图。
【分析】由俯视图和图中所示小正方体的个数的数字,知此几何体有2行3列3层,前排有2层,后排有3层,故个几何体的左视图是D。故选D。
二、填空题
1. (2012湖北荆州3分)如图,已知正方形ABCD的对角线长为2 ,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为 ▲
【答案】8。
【考点】翻折变换(折叠问题),折叠的对称性质,正方形的性质,勾股定理。
【分析】如图,∵正方形ABCD的对角线长为2 ,即BD=2 ,∠A=90°,AB=AD,∠ABD=45°,
∴AB=BD•cos∠ABD=BD•cos45°=2 。
∴AB=BC=CD=AD=2。
由折叠的性质:A′M=AM,D′N=DN,A′D′=AD,
∴图中阴影部分的周长为
A′M+BM+BC+CN+D′N+A′D′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD=2+2+2+2=8。
2. (2012湖北荆州3分)如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为 ▲ cm2.(结果可保留根号)
【答案】 +360。
【考点】由三视图判断几何体,解直角三角形。
【分析】根据该几何体的三视图知道其是一个六棱柱,
∵其高为12cm,底面半径为5 cm,∴其侧面积为6×5×12=360cm2。
又∵密封纸盒的底面面积为: cm2,
∴其全面积为:( +360)cm2。
3. (2012湖北鄂州3分)在锐角三角形ABC中,BC= ,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是 ▲ 。
【答案】4。
【考点】最短路线问题,全等三角形的判定和性质,三角形三边关系,垂直线段的性质,锐角三角函数定义,特殊角的三角函数值。
【分析】如图,在BA上截取BE=BN,连接EM。
∵∠ABC的平分线交AC于点D,∴∠EBM=∠NBM。
在△AME与△AMN中,∵BE=BN ,∠EBM=∠NBM,BM=BM,
∴△BME≌△BMN(SAS)。∴ME=MN。∴CM+MN=CM+ME≥CE。
又∵CM+MN有最小值,∴当CE是点C到直线AB的距离时,CE取最小值。
∵BC= ,∠ABC=45°,∴CE的最小值为 sin450=4。
∴CM+MN的最小值是4。
三、解答题
1. (2012湖北荆门9分)如图,Rt△ABC中,∠C=90°,将△ABC沿AB向下翻折后,再绕点A按顺时针方向旋转α度(α<∠BAC),得到Rt△ADE,其中斜边AE交BC于点F,直角边DE分别交AB、BC于点G、H.
(1)请根据题意用实线补全图形;
(2)求证:△AFB≌△AGE.
【答案】解:(1)画图,如图:
(2)证明:由题意得:△ABC≌△AED。
∴AB=AE,∠ABC=∠E。
在△AFB和△AGE中,∵∠ABC=∠E,AB=AE,∠α=∠α,
∴△AFB≌△AGE(ASA)。
【考点】翻折变换(折叠问题),旋转的性质,全等三角形的判定。
【分析】(1)根据题意画出图形,注意折叠与旋转中的对应关系。
(2)由题意易得△ABC≌△AED,即可得AB=AE,∠ABC=∠E,然后利用ASA的判定方法,即可证得△AFB≌△AGE。
2. (2012湖北天门、仙桃、潜江、江汉油田10分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.
(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.
(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.
(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的 时,求线段EF的长.
【答案】解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE。
(2)△BDF∽△CED∽△DEF,证明如下:
∵∠B+∠BDF+∠BFD=180°,∠EDF+∠BDF+∠CDE=180°,
又∵∠EDF=∠B,∴∠BFD=∠CDE。
∵AB=AC,∴∠B=∠C。∴△BDF∽△CED。∴ 。
∵BD=CD,∴ ,即 。
又∵∠C=∠EDF,∴△CED∽△DEF。∴△BDF∽△CED∽△DEF。
(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.
∵AB=AC,D是BC的中点,∴AD⊥BC,BD= BC=6。
在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣62,
∴AD=8。
∴S△ABC= •BC•AD= ×12×8=48,
S△DEF= S△ABC= ×48=12。
又∵ •AD•BD= •AB•DH,∴ 。
∵△BDF∽△DEF,∴∠DFB=∠EFD。
∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF。
又∵DF=DF,∴△DHF≌△DGF(AAS)。∴DH=DG= 。
∵S△DEF= •EF•DG= •EF• =12,∴EF=5。
3. (2012湖北恩施8分)如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,
标签: 暂无联系方式 初三数学试卷
相关文章