-
教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作
计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案
-
高三数学教案:数列复习教案
[10-15 23:11:15] 来源:http://www.xiaozhibei.com 高三数学教案 阅读:9569次【摘要】鉴于大家对www.xiaozhibei.com十分关注,小编在此为大家整理了此文“高三数学教案:数列复习教案”,供大家参考!
本文题目:高三数学教案:数列复习教案
最新一年高中数学精讲精练 第五章 数列
【知识图解】
【方法点拨】
1.学会从特殊到一般的观察、分析、思考,学会归纳、猜想、验证.
2.强化基本量思想,并在确定基本量时注重设变量的技巧与解方程组的技巧.
3.在重点掌握等差、等比数列的通项公式、求和公式、中项等基础知识的同时,会针对可化为等差(比)数列的比较简单的数列进行化归与转化.
4.一些简单特殊数列的求通项与求和问题,应注重通性通法的复习.如错位相减法、迭加法、迭乘法等.
5.增强用数学的意识,会针对有关应用问题,建立数学模型,并求出其解.
第1课 数列的概念
【考点导读】
1. 了解数列(含等差数列、等比数列)的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数;
2. 理解数列的通项公式的意义和一些基本量之间的关系;
3. 能通过一些基本的转化解决数列的通项公式和前 项和的问题。
【基础练习】
1.已知数列 满足 ,则 = 。
分析:由a1=0, 得 由此可知: 数列 是周期变化的,且三个一循环,所以可得:
2.在数列 中,若 , ,则该数列的通项 2n-1 。
3.设数列 的前n项和为 , ,且 ,则 ____2__.
4.已知数列 的前 项和 ,则其通项 .
【范例导析】
例1.设数列 的通项公式是 ,则
(1)70是这个数列中的项吗?如果是,是第几项?
(2)写出这个数列的前5项,并作出前5项的图象;
(3)这个数列所有项中有没有最小的项?如果有,是第几项?
分析:70是否是数列的项,只要通过解方程 就可以知道;而作图时则要注意数列与函数的区别,数列的图象是一系列孤立的点;判断有无最小项的问题可以用函数的观点来解决,一样的是要注意定义域问题。
解:(1)由 得: 或
所以70是这个数列中的项,是第13项。
(2)这个数列的前5项是 ;(图象略)
(3)由函数 的单调性: 是减区间, 是增区间,
所以当 时, 最小,即 最小。
点评:该题考察数列通项的定义,会判断数列项的归属,要注重函数与数列之间的联系,用函数的观点解决数列的问题有时非常方便。
例2.设数列 的前n项和为 ,点 均在函数y=3x-2的图像上,求数列 的通项公式。
分析:根据题目的条件利用 与 的关系: ,(要特别注意讨论n=1的情况)求出数列 的通项。
解:依题意得, 即 。
当n≥2时, ;
当n=1时, 所以 。
例3.已知数列{a }满足 ,
(Ⅰ)求数列 的通项公式;
(Ⅱ)若数列 满足 ,证明: 是等差数列;
分析:本题第1问采用构造等比数列来求通项问题,第2问依然是构造问题。
解:(I)
是以 为首项,2为公比的等比数列。
即
(II)
①
②;
②-①,得 即 ③
∴ ④
③-④,得 即 是等差数列。
点评:本小题主要考查数列、不等式等基本知识,考查化归的数学思想方法,考查综合解题能力。
【反馈演练】
1.若数列 前8项的值各异,且 对任意n∈N*都成立,则下列数列中可取遍 前8项值的数列为 (2) 。
(1) (2) (3) (4)
2.设Sn是数列 的前n项和,且Sn=n2,则 是 等差数列,但不是等比数列 。
3.设f(n)= (n∈N),那么f(n+1)-f(n)等于 。
4.根据市场调查结果,预测某种家用商品从年初开始的n个月内累积的需求量Sn(万件)近似地满足Sn= (21n-n2-5)(n=1,2,……,12).按此预测,在本年度内,需求量超过1.5万件的月份是 7月、8月 。
5.在数列 中, 则 505 。
6.数列 中,已知 ,
(1)写出 , , ; (2) 是否是数列中的项?若是,是第几项?
解:(1)∵ ,∴ ,
, ;
(2)令 ,解方程得 ,
∵ ,∴ , 即 为该数列的第15项。
第2课 等差、等比数列
【考点导读】
1. 掌握等差、等比数列的通项公式、前 项和公式,能运用公式解决一些简单的问题;
2. 理解等差、等比数列的性质,了解等差、等比数列与函数之间的关系;
3. 注意函数与方程思想方法的运用。
【基础练习】
1.在等差数列{an}中,已知a5=10,a12=31,首项a1= -2 ,公差d= 3 。
2.一个等比数列的第3项与第4项分别是12与18,则它的第1项是 ,第2项是 8 。
3.设 是公差为正数的等差数列,若 , ,则 。
4.公差不为0的等差数列{an}中,a2,a3,a6依次成等比数列,则公比等于 3 。
【范例导析】
例1.(1)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有
13 项。
(2)设数列{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 2 。
解:(1)答案:13
法1:设这个数列有n项
∵ ∴
∴n=13
法2:设这个数列有n项
∵
∴ ∴
又 ∴n=13
(2)答案:2 因为前三项和为12,∴a1+a2+a3=12,∴a2= =4
又a1•a2•a3=48, ∵a2=4,∴a1•a3=12,a1+a3=8,
把a1,a3作为方程的两根且a1
∴x2-8x+12=0,x1=6,x2=2,∴a1=2,a3=6,∴选B.
点评:本题考查了等差数列的通项公式及前n项和公式的运用和学生分析问题、解决问题的能力。
例2.(1)已知数列 为等差数列,且
(Ⅰ)求数列 的通项公式;(Ⅱ)证明
分析:(1)借助 通过等差数列的定义求出数列 的公差,再求出数列 的通项公式,(2)求和还是要先求出数列 的通项公式,再利用通项公式进行求和。
解:(1)设等差数列 的公差为d,
由 即d=1。
所以 即
(II)证明:因为 ,
所以
点评:该题通过求通项公式,最终通过通项公式解释复杂的不等问题,属于综合性的题目,解题过程中注意观察规律。
例3.已知数列 的首项 ( 是常数,且 ), ( ),数列 的首项 , ( )。
(1)证明: 从第2项起是以2为公比的等比数列;
(2)设 为数列 的前n项和,且 是等比数列,求实数 的值。
分析:第(1)问用定义证明,进一步第(2)问也可以求出。
解:(1)∵ ∴
(n≥2)
由 得 , ,∵ ,∴ ,
即 从第2项起是以2为公比的等比数列。
(2)
当n≥2时,
∵ 是等比数列, ∴ (n≥2)是常数, ∴3a+4=0,即 。
点评:本题考查了用定义证明等比数列,分类讨论的数学思想,有一定的综合性。
【反馈演练】
1.已知等差数列 中, ,则前10项的和 = 210 。
2.在等差数列 中,已知 则 = 42 。
3.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是 3 。
4.如果 成等比数列,则 3 , -9 。
5.设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范围;
(2)指出S1、S2、…、S12中哪一个值最大,并说明理由.
解:(1)依题意有:
解之得公差d的取值范围为-
(2)解法一:由d<0可知a1>a2>a3>…>a12>a13,因此,在S1,S2,…,S12中Sk为最大值的条件为:ak≥0且ak+1<0,即
标签: 暂无联系方式 高三数学教案
相关文章