-
教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作
计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案
-
高三数学教案:圆锥曲线复习教案
[10-15 23:11:15] 来源:http://www.xiaozhibei.com 高三数学教案 阅读:9141次【摘要】鉴于大家对www.xiaozhibei.com十分关注,小编在此为大家整理了此文“高三数学教案:圆锥曲线复习教案”,供大家参考!
本文题目:高三数学教案:圆锥曲线复习教案
90题突破高中数学圆锥曲线
1.如图,已知直线L: 的右焦点F,且交椭圆C于A、B两点,点A、B在直线 上的射影依次为点D、E。
(1)若抛物线 的焦点为椭圆C的上顶点,求椭圆C的方程;
(2)(理)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由。
(文)若 为x轴上一点,求证:
2.如图所示,已知圆 定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足 ,点N的轨迹为曲线E。
(1)求曲线E的方程;
(2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足 的取值范围。
3.设椭圆C: 的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q, 且
⑴求椭圆C的离心率;
⑵若过A、Q、F三点的圆恰好与直线
l: 相切,求椭圆C的方程.
4.设椭圆 的离心率为e=
(1)椭圆的左、右焦点分别为F1、F2、A是椭圆上的一点,且点A到此两焦点的距离之和为4,求椭圆的方程.
(2)求b为何值时,过圆x2+y2=t2上一点M(2, )处的切线交椭圆于Q1、Q2两点,而且OQ1⊥OQ2.
5.已知曲线 上任意一点P到两个定点F1(- ,0)和F2( ,0)的距离之和为4.
(1)求曲线 的方程;
(2)设过(0,-2)的直线 与曲线 交于C、D两点,且 为坐标原点),求直线 的方程.
6.已知椭圆 的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、C作⊙P,其中圆心P的坐标为(m,n).
(Ⅰ)当m+n>0时,求椭圆离心率的范围;
(Ⅱ)直线AB与⊙P能否相切?证明你的结论.
7.有如下结论:“圆 上一点 处的切线方程为 ”,类比也有结论:“椭圆 处的切线方程为 ”,过椭圆C: 的右准线l上任意一点M引椭圆C的两条切线,切点为 A、B.
(1)求证:直线AB恒过一定点;(2)当点M在的纵坐标为1时,求△ABM的面积
8.已知点P(4,4),圆C: 与椭圆E: 有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(Ⅰ)求m的值与椭圆E的方程;
(Ⅱ)设Q为椭圆E上的一个动点,求 的取值范围.
9.椭圆的对称中心在坐标原点,一个顶点为 ,右焦点 与点 的距离为 。
(1)求椭圆的方程;
(2)是否存在斜率 的直线 : ,使直线 与椭圆相交于不同的两点 满足 ,若存在,求直线 的倾斜角 ;若不存在,说明理由。
10.椭圆方程为 的一个顶点为 ,离心率 。
(1)求椭圆的方程;
(2)直线 : 与椭圆相交于不同的两点 满足 ,求 。
11.已知椭圆 的左焦点为F,左右顶点分别为A,C上顶点为B,过F,B,C三点作 ,其中圆心P的坐标为 .
(1) 若椭圆的离心率 ,求 的方程;
(2)若 的圆心在直线 上,求椭圆的方程.
12.已知直线 与曲线 交于不同的两点 , 为坐标原点.
(Ⅰ)若 ,求证:曲线 是一个圆;
(Ⅱ)若 ,当 且 时,求曲线 的离心率 的取值范围.
13.设椭圆 的左、右焦点分别为 、 ,A是椭圆C上的一点,且 ,坐标原点O到直线 的距离为 .
(1)求椭圆C的方程;
(2)设Q是椭圆C上的一点,过Q的直线l交x轴于点 ,较y轴于点M,若 ,求直线l的方程.
14.已知抛物线的顶点在原点,焦点在y轴的负半轴上,过其上一点 的切线方程为 为常数).
(I)求抛物线方程;
(II)斜率为 的直线PA与抛物线的另一交点为A,斜率为 的直线PB与抛物线的另一交点为B(A、B两点不同),且满足 ,求证线段PM的中点在y轴上;
(III)在(II)的条件下,当 时,若P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标的取值范围.
15.已知动点A、B分别在x轴、y轴上,且满足|AB|=2,点P在线段AB上,且
设点P的轨迹方程为c。
(1)求点P的轨迹方程C;
(2)若t=2,点M、N是C上关于原点对称的两个动点(M、N不在坐标轴上),点Q
坐标为 求△QMN的面积S的最大值。
16.设 上的两点,
已知 , ,若 且椭圆的离心率 短轴长为2, 为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由
17.如图,F是椭圆 (a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为 .点C在x轴上,BC⊥BF,B,C,F三点确定的圆M恰好与直线l1: 相切.
(Ⅰ)求椭圆的方程:
(Ⅱ)过点A的直线l2与圆M交于PQ两点,且 ,求直线l2的方程.
18.如图,椭圆长轴端点为 , 为椭圆中心, 为椭圆的右焦点,且 .
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为 ,直线 交椭圆于 两点,问:是否存在直线 ,使点 恰为 的垂心?若存在,求出直线 的方程;若不存在,请说明理由.
19.如图,已知椭圆的中心在原点,焦点在 轴上,离心率为 ,且经过点 . 直线 交椭圆于 两不同的点.
20.设 ,点 在 轴上,点 在 轴上,且
(1)当点 在 轴上运动时,求点 的轨迹 的方程;
(2)设 是曲线 上的点,且 成等差数列,当 的垂直平分线与 轴交于点 时,求 点坐标.
21.已知点 是平面上一动点,且满足
(1)求点 的轨迹 对应的方程;
(2)已知点 在曲线 上,过点 作曲线 的两条弦 和 ,且 ,判断:直线 是否过定点?试证明你的结论.
22.已知椭圆 的中心在坐标原点,焦点在坐标轴上,且经过 、 、 三点.
(1)求椭圆 的方程:
(2)若点D为椭圆 上不同于 、 的任意一点, ,当 内切圆的面积最大时。求内切圆圆心的坐标;
(3)若直线 与椭圆 交于 、 两点,证明直线 与直线 的交点在直线 上.
23.过直角坐标平面 中的抛物线 的焦点 作一条倾斜角为 的直线与抛物线相交于A,B两点。
(1)用 表示A,B之间的距离;
(2)证明: 的大小是与 无关的定值,
并求出这个值。
24.设 分别是椭圆C: 的左右焦点
(1)设椭圆C上的点 到 两点距离之和等于4,写出椭圆C的方程和焦点坐标
(2)设K是(1)中所得椭圆上的动点,求线段 的中点B的轨迹方程
(3)设点P是椭圆C 上的任意一点,过原点的直线L与椭圆相交于M,N两点,当直线PM ,PN的斜率都存在,并记为 试探究 的值是否与点P及直线L有关,并证明你的结论。
25.已知椭圆 的离心率为 ,直线 : 与以原点为圆心、以椭圆 的短半轴长为半径的圆相切.
(I)求椭圆 的方程;
(II)设椭圆 的左焦点为 ,右焦点 ,直线 过点 且垂直于椭圆的长轴,动直线 垂直 于点 ,线段 垂直平分线交 于点 ,求点 的轨迹 的方程;
(III)设 与 轴交于点 ,不同的两点 在 上,且满足 求 的取值范围.
26.如图所示,已知椭圆 : , 、 为
其左、右焦点, 为右顶点, 为左准线,过 的直线 : 与椭圆相交于 、
两点,且有: ( 为椭圆的半焦距)
(1)求椭圆 的离心率 的最小值;
(2)若 ,求实数 的取值范围;
(3)若 , ,
求证: 、 两点的纵坐标之积为定值;
27.已知椭圆 的左焦点为 ,左右顶点分别为 ,上顶点为 ,过 三点作圆 ,其中圆心 的坐标为
标签: 暂无联系方式 高三数学教案
相关文章