-
教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作
计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案
-
高三数学教案:压轴题放缩法技巧全总结
[10-15 23:19:38] 来源:http://www.xiaozhibei.com 高三数学教案 阅读:9964次所以 .
(ii)异侧加强(数学归纳法)
(iii)双向加强
有些不等式,往往是某个一般性命题的特殊情况,这时,不妨”返璞归真”,通过双向加强还原其本来面目,从而顺利解决原不等式.其基本原理为:
欲证明 ,只要证明: .
例60.已知数列 满足: ,求证:
解析: ,从而 ,所以有
,所以
又 ,所以 ,所以有
所以
所以综上有
引申:已知数列 满足: ,求证: .
解析:由上可知 ,又 ,所以
从而
又当 时, ,所以综上有 .
同题引申: (2008年浙江高考试题)已知数列 , , , .
记 , .求证:当 时.
(1) ; (2) ; ★(3) .
解析:(1) ,猜想 ,下面用数学归纳法证明:
(i)当 时, ,结论成立;
(ii)假设当 时, ,则 时,
从而 ,所以
所以综上有 ,故
(2)因为 则 , ,…, ,相加后可以得到: ,所以
,所以
(3)因为 ,从而 ,有 ,所以有
,从而
,所以
,所以
所以综上有 .
例61.(2008年陕西省高考试题)已知数列 的首项 , , .
(1)证明:对任意的 , , ;
(2)证明: .
解析:(1)依题,容易得到 ,要证 , , ,
即证
即证 ,设 所以即证明
从而 ,即 ,这是显然成立的.
所以综上有对任意的 , ,
(法二)
, 原不等式成立.
(2)由(1)知,对任意的 ,有
.
取 ,
则 .
原不等式成立.
十四、经典题目方法探究
探究1.(2008年福建省高考)已知函数 .若 在区间 上的最小值为 ,
令 .求证: .
证明:首先:可以得到 .先证明
(方法一) 所以
(方法二)因为 ,相乘得:
,从而 .
(方法三)设A= ,B= ,因为A
所以 , 从而 .
下面介绍几种方法证明
(方法一)因为 ,所以 ,所以有
(方法二) ,因为 ,所以
令 ,可以得到 ,所以有
(方法三)设 所以 ,
从而 ,从而
又 ,所以
(方法四)运用数学归纳法证明:
(i)当 时,左边= ,右边= 显然不等式成立;
(ii)假设 时, ,则 时, ,
所以要证明 ,只要证明 ,这是成立的.
这就是说当 时,不等式也成立,所以,综上有
探究2.(2008年全国二卷)设函数 .如果对任何 ,都有 ,求 的取值范围.
解析:因为 ,所以
设 ,则 ,
因为 ,所以
(i)当 时, 恒成立,即 ,所以当 时, 恒成立.
(ii)当 时, ,因此当 时,不符合题意.
(iii)当 时,令 ,则 故当 时, .
因此 在 上单调增加.故当 时, ,
即 .于是,当 时,
所以综上有 的取值范围是
变式:若 ,其中
且 , ,求证:
.
证明:容易得到
由上面那个题目知道
就可以知道
★同型衍变:(2006年全国一卷)已知函数 .若对任意 x∈(0,1) 恒有 f (x) >1, 求 a的取值范围.
解析:函数f (x)的定义域为(-∞, 1)∪(1, +∞), 导数为 .
(ⅰ) 当0< a≤2时, f (x) 在区间 (-∞, 1) 为增函数, 故对于任意x∈(0, 1) 恒有 f (x) > f (0) =1, 因而这时a满足要求.
(ⅱ) 当a>2时, f (x) 在区间 (- , )为减函数, 故在区间(0, ) 内任取一点, 比如取 , 就有 x0∈(0, 1) 且 f (x0) < f (0) =1, 因而这时a不满足要求.
(ⅲ) 当a≤0时, 对于任意x∈(0, 1) 恒有
≥ , 这时a满足要求.
综上可知, 所求 a的取值范围为 a≤2.
【总结】最新一年年已经到来,新的一年www.xiaozhibei.com也会为您收集更多更好的文章,希望本文“高三数学教案:压轴题放缩法技巧全总结”能给您带来帮助!下面请看更多频道:
更多频道:
高中频道 高中英语学习
标签: 暂无联系方式 高三数学教案
相关文章