-
教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作
计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案
-
高三理科数学复习教案:三角函数总复习教学案
[10-15 23:13:07] 来源:http://www.xiaozhibei.com 高三数学教案 阅读:9793次即2sin(α+β)cos α=4cos(α+β)sin α,所以tan(α+β)=2 tan α=1.
又因为α、β∈(0,π4),所以α+β=π4.
【点拨】三角函数式的化简与求值的主要过程是三角变换,要善于抓住已知条件与目标之间的结构联系,找到解题的突破口与方向.
【变式训练1】如果tan(α+β)=35,tan(β-π4)=14,那么tan(α+π4)等于( )
A.1318 B.1322 C.723 D.318
【解析】因为α+π4=(α+β)-(β-π4),
所以tan(α+π4)=tan[(α+β)-(β-π4)]=tan(α+β)-tan(β-π4)1+tan(α+β)tan(β-π4)=723.
故选C.
题型二 等式的证明
【例2】求证:sin βsin α=sin(2α+β)sin α-2co s(α+β).
【证明】证法一:
右边=sin [(α+β)+α]-2cos(α+β)sin αsin α=sin(α+β)cos α-cos(α+β)sin αsin α
=sin [(α+β)-α]sin α=sin βsin α=左边.
证法二:sin(2α+β)sin α-sin βsin α=sin(2α+β)-sin βsin α=2cos(α+β)sin αsin α=2cos(α+β),
所以sin(2α+β)sin α-2cos(α+β)=sin βsin α.
【点拨】证法一将2α+β写成(α+β)+α,使右端的角形式上一致,易于共同运算;证法二把握结构特征,用“变更问题法”证明,简捷而新颖.
【变式训练2】已知5sin α=3sin(α-2β),求证:tan(α-β)+4tan β=0.
【证明】因为5sin α=3sin(α-2β),所以5sin[(α-β)+β]=3sin[(α-β)-β],
所以5sin(α-β)cos β+5cos(α-β)sin β=3sin(α-β)cos β-3cos(α-β)sin β,
所以2sin(α-β)cos β+8cos(α-β)sin β=0.
即tan(α-β)+4tan β=0.
题型三 三角恒等变换的应用
【例3】已知△ABC是非直角三角形.
(1)求证:tan A+tan B+tan C=tan Atan Btan C;
(2)若A>B且tan A=-2tan B,求证:tan C=sin 2B3-cos 2B;
(3)在(2)的条件下,求tan C的最大值.
【解析】(1)因为C=π-(A+B),
所以tan C=-tan(A+B)=-(tan A+tan B)1-tan Atan B,
所以tan C-tan Atan Btan C=-tan A-tan B,
即tan A+tan B+tan C=tan Atan Btan C.
(2)由(1)知tan C=-(tan A+tan B)1-tan Atan B=tan B1+2tan2B=sin Bcos Bcos2B+2sin2B=
=sin 2B2(2-1+cos 2B2)=sin 2B3-cos 2B.
(3)由(2)知tan C=tan B1+2tan2B=12tan B+1tan B≤122=24,
当且仅当2tan B=1tan B,即tan B=22时,等号成立.
所以tan C的最大值为24.
【点拨】熟练掌握三角变换公式并灵活地运用来解决与三角形有关的问题,要有较明确的目标意识.
【变式训练3】在△ABC中,tan B+tan C+3tan Btan C=3,3tan A+3tan B+1=tan Atan B,试判断△ABC的形状.
【解析】由已知得tan B+tan C=3(1-tan Btan C),
3(tan A+tan B)=-(1-tan Atan B),
即tan B+tan C1-tan Btan C=3,tan A+tan B1-tan Atan B=-33.
所以tan(B+C)=3,tan(A+B)=-33.
因为0
又A+B+C=π,故A=2π3,B=C=π6.
所以△ABC是顶角为2π3的等腰三角形.
总结提高
三角恒等式的证明,一般考虑三个“统一”:①统一角度,即化为同一个角的三角函数;②统一名称,即化为同一种三角函数;③统一结构形式.
5.5 三角函数的图象和性质
典例精析
题型一 三角函数的周期性与奇偶性
【例1】已知函数f(x)=2sin x4cos x4+3cos x2.
(1)求函数f(x)的最小正周期;
(2)令g(x)=f(x+π3),判断g(x)的奇偶性.
【解析】(1)f(x)=2sin x4cos x4+3cos x2=sin x2+3cos x2=2sin(x2+π3),
所以f(x)的最小正周期T=2π12=4π.
(2)g(x)=f(x+π3)=2sin[12(x+π3)+π3]=2sin(x2+π2)=2cos x2.
所以g(x)为偶函数.
【点拨】解决三角函数的有关性质问题,常常要化简三角函数.
【变式训练1】函数y=sin2x+sin xcos x的最小正周期T等于( )
A.2π B.π C.π2 D.π3
【解析】y=1-cos 2x2+12sin 2x=22(22sin 2x-22cos 2x)+12
=22sin(2x-π4)+12,所以T=2π2=π.故选B.
题型二 求函数的值域
【例2】求下列函数的值域:
(1)f(x)=sin 2xsin x1-cos x;
(2)f(x)=2cos(π3+x)+2cos x.
【解析】(1)f(x)=2sin xcos xsin x1-cos x=2cos x(1-cos2x)1-cos x=2cos2x+2cos x
=2(cos x+12)2-12,
当cos x=1时,f(x)max=4,但cos x≠1,所以f(x)<4,
当cos x=-12时,f(x)min=-12,所以函数的值域为[-12,4).
(2)f(x)=2(cos π3cos x-sin π3sin x)+2cos x
=3cos x-3sin x=23cos(x+π6),
所以函数的值域为[-23,23].
【点拨】求函数的值域是一个难点,分析函数式的特点,具体问题具体分析,是突破这一难点的关键.
【变式训练2】求y=sin x+cos x+sin xcos x的值域.
【解析】令t=sin x+cos x,则有t2=1+2sin xcos x,即sin xcos x=t2-12.
所以y=f(t)=t+t2-12=12(t+1)2-1.
又t=sin x+cos x=2sin(x+π4),所以-2≤t≤2.
故y=f(t)=12(t+1)2-1(-2≤t≤2),
从而f(-1)≤y≤f(2),即-1≤y≤2+12.
所以函数的值域为[-1,2+12].
题型三 三角函数的单调 性
【例3】已知函数f(x)=sin(ωx+φ)(φ>0,|φ|<π)的部分图象如图所示.
(1)求ω,φ的值;
(2)设g(x)=f(x)f(x-π4),求函数g(x)的单调递增区间.
【解析】(1)由图可知,T=4(π2-π4)=π,ω=2πT=2.
又由f(π2)=1知,sin(π+φ)=1,又f(0)=-1,所以sin φ=-1.
因为|φ|<π,所以φ=-π2.
(2)f(x)=sin(2x-π2)=-cos 2x.
所以g(x)=(-cos 2x)[-cos(2x-π2)]=cos 2xsin 2x=12sin 4x.
所以当2kπ-π2≤4x≤2kπ+π2,即kπ2-π8≤x≤kπ2+π8(k∈Z)时g(x)单调递增.
故函数g(x)的单调增区间为[kπ2-π8,kπ2+π8](k∈Z).
【点拨】观察图象,获得T的值,然后再确定φ的值,体现了数形结合的思想与方法.
【变式训练3】使函数y=sin(π6-2x)(x∈[0,π])为增函数的区间是( )
A.[0,π3] B.[π12,7π12]
C.[π3,5π6] D.[5π6,π]
【解析】利用复合函数单调性“同增异减”的原则判定,选C.
总结提高
1.求三角函数的定义域和值域应注意利用三角函数图象.
标签: 暂无联系方式 高三数学教案
相关文章