小智贝文库 :专注文档资料8年,极速海量,用心打造! 首页 |注册 |登录 |帮助

教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作

计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案

当前位置: 小智贝文库中小学教学高中学习网高三学习辅导高三数学复习高三数学教案高三理科数学复习教案:数列总复习

高三理科数学复习教案:数列总复习

[10-15 23:13:07]   来源:http://www.xiaozhibei.com  高三数学教案   阅读:9772

】摘要】欢迎来到www.xiaozhibei.com高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。因此小编在此为您编辑了此文:“高三理科数学复习教案:数列总复习”希望能为您的提供到帮助。

本文题目:高三理科数学复习教案:数列总复习

高考导航

考试要求 重难点击 命题展望

1.数列的概念和简单表示法

(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式); (2)了解数列是自变量为正整数的一类函数.

2.等差数列、等比数列

(1)理解等差数列、等比数列的概念;

(2)掌握等差数列、等比数列的通项公式与前n项和公式;

(3)能在具体问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题;

(4)了解等差数列与一次函数、等比数列与指数函数的关系. 本章重点:1.等差数列、等比数列的定义、通项公式和前n项和公式及有关性质;

2.注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、分组求和法、函数与方程思想、数学模型思想以及离散与连续的关系.

本章难点:1.数列概念的理解;2.等差等比数列性质的运用;3.数列通项与求和方法的运用. 仍然会以客观题考查等差数列与等比数列的通项公式和前n项和公式及性质,在解答题中,会保持以前的风格,注重数列与其他分支的综合能力的考查,在高考中,数列常考常新,其主要原因是它作为一 个特殊函数,使它可以与函数、不等式、解析几何、三角函数等综合起来,命出开放性、探索性强的问题,更体现了知识交叉命题原则得以贯彻;又因为数列与生产、生活的联系,使数列应用题也倍受欢迎.

知识网络

6.1 数列的概念与简单表示法

典例精析

题型一 归纳、猜想法求数列通项

【例1】根据下列数列的前几项,分别写出它们的一个通项公式:

(1)7,77,777,7 777,…

(2)23,-415,635,-863,…

(3)1,3,3,5,5,7,7,9,9,…

【解析】(1)将数列变形为79•(10-1),79(102-1),79(103-1),…,79(10n-1),

故an=79(10n-1).

(2)分开观察,正负号由(-1)n+1确定,分子是偶数2n,分母是1×3,3×5,5×7, …,(2n-1)(2n+1),故数列的通项公式可写成an =(-1)n+1 .

(3)将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,….

故数列的通项公式为an=n+ .

【点拨】联想与转换是由已知认识未知的两种有效的思维方法,观察归纳是由特殊到一般的有效手段,本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项序数的一般规律,从而求得通项.

【变式训练1】如下表定义函数f(x):

x 1 2 3 4 5

f(x) 5 4 3 1 2

对于数列{an},a1=4,an=f(an-1),n=2,3,4,…,则a2 008的值是(  )

A.1 B.2 C.3 D.4

【解析】a1=4,a2=1,a3=5,a4=2,a5=4,…,可得an+4=an.

所以a2 008=a4=2,故选B.

题型二 应用an= 求数列通项

【例2】已知数列{an}的前n项和Sn,分别求其通项公式:

(1)Sn=3n-2;

(2)Sn=18(an+2)2 (an>0).

【解析】(1)当n=1时,a1=S1=31-2=1,

当n≥2时,an=Sn-Sn-1=(3n-2)-(3n-1-2)=2×3n-1,

又a1=1不适合上式,

故an=

(2)当n=1时,a1=S1=18(a1+2)2,解得a1=2,

当n≥2时,an=Sn-Sn-1=18(an+2)2-18(an-1+2)2,

所以(an-2)2-(an-1+2)2=0,所以(an+an-1)(an-an-1-4)=0,

又an>0,所以an-an-1=4,

可知{an}为等差数列,公差为4,

所以an=a1+(n-1)d=2+(n-1)•4=4n-2,

a1=2也适合上式,故an=4n-2.

【点拨】本例的关键是应用an= 求数列的通项,特别要注意验证a1的值是否满足“n≥2”的一般性通项公式.

【变式训练2】已知a1=1,an=n(an+1-an)(n∈N*),则数列{an}的通项公式是(  )

A.2n-1 B.(n+1n)n-1 C.n2 D.n

【解析】由an=n(an+1-an)⇒an+1an=n+1n.

所以an=anan-1×an-1an-2×…×a2a1=nn-1×n-1n-2×…×32×21=n,故选D.

题型三 利用递推关系求数列的通项

【例3】已知在数列{an}中a1=1,求满足下列条件的数列的通项公式:

(1)an+1=an1+2an;(2)an+1=2an+2n+1.

【解析】(1)因为对于一切n∈N*,an≠0,

因此由an+1=an1+2an得1an+1=1an+2,即1an+1-1an=2.

所以{1an}是等差数列,1an=1a1+(n-1)•2=2n-1,即an=12n-1.

(2)根据已知条件得an+12n+1=an2n+1,即an+12n+1-an2n=1.

所以数列{an2n}是等差数列,an2n=12+(n-1)=2n-12,即an=(2n-1)•2n-1.

【点拨】通项公式及递推关系是给出数列的常用方法,尤其是后者,可以通过进一步的计算,将其进行转化,构造新数列求通项,进而可以求得所求数列的通项公式.

【变式训练3】设{an}是首项为1的正项数列,且(n+1)•a2n+1-na2n+an+1an=0(n=1,2,3,…),求an.

【解析】因为数列{an}是首项为1的正项数列,

所以anan+1≠0,所以(n+1)an+1an-nanan+1+1=0,

令an+1an=t,所以(n+1)t2+t-n=0,

所以[(n+1)t-n](t+1)=0,

得t=nn+1或t=-1(舍去),即an+1an=nn+1.

所以a2a1•a3a2•a4a3•a5a4•…•anan-1=12•23•34•45•…•n-1n,所以an=1n.

总结提高

1.给出数列的前几项求通项时,常用特征分析法与化归法,所求通项不唯一.

2.由Sn求an时,要分n=1和n≥2两种情况.

3.给出Sn与an的递推关系,要求an,常用思路是:一是利用Sn-Sn-1=an(n≥2)转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系,再求an.

6.2 等差数列

典例精析

题型一 等差数列的判定与基本运算

【例1】已知数列{an}前n项和Sn=n2-9n.

(1)求证:{an}为等差数列;(2)记数列{|an|}的前n项和为Tn,求 Tn的表达式.

【解析】(1)证明:n=1时,a1=S1=-8,

当n≥2时,an=Sn-Sn-1=n2-9n-[(n-1)2-9(n-1)]=2n-10,

当n=1时,也适合该式,所以an=2n-10 (n∈N*).

当n≥2时,an-an-1=2,所以{an}为等差数列.

(2)因为n≤5时,an≤0,n≥6时,an>0.

所以当n≤5时,Tn=-Sn=9n-n2,

当n≥6时,Tn=a1+a2+…+a5+a6+…+an

=-a1-a2-…-a5+a6+a7+…+an

=Sn-2S5=n2-9n-2×(-20)=n2-9n+40,

所以,

【点拨】根据定义法判断数列为等差数列,灵活运用求 和公式.

【变式训练1】已知等差数列{an}的前n项和为Sn,且S21=42,若记bn= ,则数列{bn}(  )

A.是等差数列,但不是等比数列 B.是等比数列,但不是等差数列

C.既是等差数列,又是等比数列 D.既不是等差数列,又不是等比数列

【解析】本题考查了两类常见数列,特别是等差数列的性质.根据条件找出等差数列{an}的首项与公差之间的关系从而确定数列{bn}的通项是解决问题的突破口.{an}是等差数列,则S21=21a1+21×202d=42.

[1] [2] [3] [4]  下一页

标签: 暂无联系方式 高三数学教案

相关文章