小智贝文库 :专注文档资料8年,极速海量,用心打造! 首页 |注册 |登录 |帮助

教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作

计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案

当前位置: 小智贝文库中小学教学初中学习网初三学习辅导初三数学辅导资料初三数学试卷2016年湖北三角形中考数学题分类解析

2016年湖北三角形中考数学题分类解析

[10-15 23:08:04]   来源:http://www.xiaozhibei.com  初三数学试卷   阅读:9806

残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度 ,

则AC的长度是 ▲ cm.

【答案】210。

【考点】解直角三角形的应用(坡度坡角问题)。

【分析】过点B作BD⊥AC于D,

根据题意得:AD=2×30=60(cm),BD=18×3=54(cm),

∵斜坡BC的坡度i=1:5,∴BD:CD=1:5。

∴CD=5BD=5×54=270(cm)。

∴AC=CD-AD=270-60=210(cm)。∴AC的长度是210cm。

5. (2012湖北荆州3分)如图,在直角坐标系中,四边形OABC是直角梯形,BC∥OA,⊙P分别与OA、OC、BC相切于点E、D、B,与AB交于点F.已知A(2,0),B(1,2),则tan∠FDE=  ▲  .

【答案】 。

【考点】切线的性质,锐角三角函数的定义,圆周角定理。

【分析】连接PB、PE.

∵⊙P分别与OA、BC相切于点E、B,∴PB⊥BC,PE⊥OA。

∵BC∥OA,∴B、P、E在一条直线上。

∵A(2,0),B(1,2),∴AE=1,BE=2。∴ 。

∵∠EDF=∠ABE,∴tan∠FDE= 。

6. (2012湖北黄冈3分)如图,在△ ABC 中,AB=AC,∠A=36° ,AB的垂直平分线交AC 于点E,垂

足为点D,连接BE,则∠EBC 的度数为 ▲ .

【答案】36°。

【考点】线段垂直平分线的性质,等腰三角形的性质,三角形内角和定理。

【分析】∵DE是AB的垂直平分线,∴AE=BE。

∵∠A=36° ,∴∠ABE=∠A=36°。

∵AB=AC,∴∠ABC=∠C= 。∴∠EBC=∠ABC-∠ABE=72°-36°=36°。

7. (2012湖北随州4分)如图,点D、E分别在AB、AC上,且∠ABC=∠AED.若DE=4,AE=5,BC=8;则AB的长为 ▲ .

【答案】10。

【考点】相似三角形的判定和性质。

【分析】根据已知条件可知△ABC∽△AED,通过两三角形的相似比可求出AB的长:

在△ABC和△AED中,∵∠ABC=∠AED,∠BAC=∠EAD,∴△AED∽△ABC。

∴AB AE =BC ED 。

又∵DE=4,AE=5,BC=8,∴AB=10。

8. (2012湖北十堰3分)如图,Rt△ABC中,∠ACB=90°,∠B=30°,AB=12cm,以AC为直径的半圆O交AB于点D,点E是AB的中点,CE交半圆O于点F,则图中阴影部分的面积为  ▲  cm2.

【答案】 。

【考点】含30度角直角三角形的性质,等边三角形的判定和性质,直角三角形斜边上的中线的性质,圆周角定理,锐角三角函数定义,特殊角的三角函数值,扇形面积的计算。

【分析】连接OD,OF。

∵Rt△ABC中,∠ACB=90°,∠B=30°,AB=12cm,

∴AC= AB=6cm,∠BAC=60°。

∵E是AB的中点,∴CE= AB=AE。∴△ACE是等边三角形。

∴∠ECA=60°。

又∵OA=OD,∴△AOD是等边三角形。∴∠DOA=60°。∴∠COD=120°。

同理,∠COF=60°。∴∠DOA=∠COE=60°。∴ ,AD=CF。

∴ 与弦AD围成的弓形的面积等于 与弦CF围成的弓形的面积相等。

∴ 。

∵AC是直径,∴∠CDA=90°。

又∵∠BAC=60°,AC =6cm,∴ 。

又∵△OCD中CD边上的高= ,

∴ .

又∵ ,∴ 。

9. (2012湖北孝感3分)计算:cos245º+tan30º•sin60º= ▲ .

【答案】1。

【考点】特殊角的三角函数值,二次根式化简。

【分析】 。

10. (2012湖北襄阳3分)在等腰△ABC中,∠A=30°,AB=8,则AB边上的高CD的长是  ▲  .

【答案】4或 或 。

【考点】等腰三角形的性质,含30度角的直角三角形的性质,锐角三角函数定义,特殊角的三角函数值。

【分析】根据题意画出AB=AC,AB=BC和AC=BC时的图象,然后根据等腰三角形的性质和解直角三角形,分别进行计算即可:

(1)如图,当AB=AC时,

∵∠A=30°,

∴CD= AC= ×8=4。

(2)如图,当AB=BC时,则∠A=∠ACB=30°。

∴∠ACD=60°。∴∠BCD=30°

∴CD=cos∠BCD•BC=cos30°×8=4 。

(3)如图,当AC=BC时,则AD=4。

∴CD=tan∠A•AD=tan30°•4= 。

综上所述,AB边上的高CD的长是4或 或 。

三、解答题

1. (2012湖北武汉6分)如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.

【答案】证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE。∴∠DCE=∠ACB。

∵在△DCE和△ACB中,DC=AC,∠DCE=∠ACB,CE=CB,

∴△DCE≌△ACB(SAS)。∴DE=AB。

【考点】全等三角形的判定和性质。

【分析】求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案。

2. (2012湖北武汉10分)已知△ABC中,AB= ,AC= ,BC=6.

(1)如图1,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长;

(2)如图2,是由100个边长为1的小正方形组成的10×10的正方形网格,设顶点在这些小正方形顶点

的三角形为格点三角形.

①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明);

②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需

证明).

【答案】解:(1)①如图A,过点M作MN∥BC交AC于点N,

则△AMN∽△ABC,

∵M为AB中点,∴MN是△ABC 的中位线。

∵BC=6,∴MN=3。

②如图B,过点M作∠AMN=∠ACB交AC于点N,

则△AMN∽△ACB,∴ 。

∵BC=6,AC= ,AM= ,∴ ,解得MN= 。

综上所述,线段MN的长为3或 。

(2)①如图所示:

②每条对角线处可作4个三角形与原三角形相似,那么共有8个。

【考点】网格问题,作图(相似变换),三角形中位线定理,相似三角形的性质。

【分析】(1)作MN∥BC交AC于点N,利用三角形的中位线定理可得MN的长;作∠AMN=∠B,利用相似可得MN的长。

(2)①A1B1= 为直角三角形斜边的两直角边长为2,4,A1C1= 为直角三角形斜边的两直角边长为4,8。以此,先作B1C1=6,画出△A1B1C1。

②以所给网格的对角线作为原三角形中最长的边,可得每条对角线处可作4个三角形与原三角形相似,那么共有8个。

3. (2012湖北黄石8分)如图所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太

阳能热水器:先安装支架AB和CD(均与水平面垂直),再将集热板安装在AD上.为使集热板吸热率更高,

公司规定:AD与水平面夹角为θ1,且在水平线上的射影AF为1.4m.现已测量出屋顶斜面与水平面夹角为θ2,

并已知 , 。如果安装工人确定支架AB高为25cm,求支架CD的高(结果精

确到1cm)。

【答案】解:如图所示,过点A作AE∥BC,则 ,且 。

在Rt△ADF中: ,在Rt△EAF中, ,

上一页  [1] [2] [3] [4]  下一页

标签: 暂无联系方式 初三数学试卷

相关文章