-
教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作
计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案
-
2016年湖北三角形中考数学题分类解析
[10-15 23:08:04] 来源:http://www.xiaozhibei.com 初三数学试卷 阅读:9806次∴ 。
又∵ , , ,
∴ 。
∴ 。
答:支架CD的高约为119cm 。
【考点】解直角三角形的应用,锐角三角函数定义。
【分析】过A作AE∥BC,则∠EAF=∠CBG=θ2,EC=AB=25cm,再根据锐角三角函数的定义用θ1、θ2表示出DF、EF的值,再根据DC=DE+EC进行解答即可。
4. (2012湖北黄石9分)如图1所示:等边△ABC中,线段AD为其内角平分线,过D点的直线
B1C1⊥AC于C1交AB的延长线于B1.
(1)请你探究: , 是否成立?
(2)请你继续探究:若△ABC为任意三角形,线段AD为其内角平分线,请问 一定成立
吗?并证明你的判断.
(3)如图2所示Rt△ABC中,∠ACB=900,AC=8, ,E为AB上一点且AE=5,CE交其内
角角平分线AD与F.试求 的值.
【答案】解:(1)∵线段AD为等边△ABC内角平分线,∴根据三线合一,得CD=DB。
∴ 。
过点D作DN⊥AB于点H。
∵线段AD为等边△ABC内角平分线,∴C1D=ND。
∵等边△ABC中,B1C1⊥AC,∴∠B1=300。
∴ 。
∴ , 都成立。
(2)结论仍然成立。证明如下:
如图,ΔABC为任意三角形,过B点作BE∥AC交 AD的延长线于点G 。
∵∠G=∠CAD=∠BAD,∴BG=AB。
又ΔGBD∽ΔACD ,
∴ ,即 。
∴ 对任意三角形结论仍然成立。
﹙3﹚如图,连接ED。
∵AD为ΔABC的内角角平分线,AC=8, ,
∴由(2)得, 。
又∵AE=5,∴EB=AB-AE= 。∴ 。
∴ 。∴DE∥AC。 ∴ΔDEF∽ΔACF。
∴ 。
5. (2012湖北天门、仙桃、潜江、江汉油田7分)如图,海中有一小岛B,它的周围15海里内有暗礁.有一货轮以30海里/时的速度向正北航行半小时后到达C处,发现B岛在它的东北方向.问货轮继续向北航行有无触礁的危险?(参考数据: )
【答案】解:作BD⊥AC于点D.设BD=x海里,则
在Rt△ABD中, ,∴AD= 。
在Rt△CBD中, ,∴CD=x。
∴AC=AD﹣CD= 。
∵AC=30× =15,∴ =15,解得x≈21.4。
∵21.4海里>15海里。∴货轮继续向北航行没有触礁的危险。
【考点】解直角三角形的应用(方向角问题)。
【分析】作BD⊥AC于点D,在Rt△ABD和Rt△CBD中求得点B到AC的距离,从而能判断出有无危险。
6. (2012湖北恩施8分)新闻链接,据[侨报网讯]外国炮艇在南海追袭中国渔船被中国渔政逼退.
2012年5月18日,某国3艘炮艇追袭5条中国渔船.刚刚完成黄岩岛护渔任务的“中国渔政310”船人船未歇立即追往北纬11度22分、东经110度45分附近海域护渔,保护100多名中国渔民免受财产损失和人身伤害.某国炮艇发现中国目前最先进的渔政船正在疾速驰救中国渔船,立即掉头离去.(见图1)
解决问题
如图2,已知“中国渔政310”船(A)接到陆地指挥中心(B)命令时,渔船(C)位于陆地指挥中心正南方向,位于“中国渔政310”船西南方向,“中国渔政310”船位于陆地指挥中心南偏东60°方向,AB= 海里,“中国渔政310”船最大航速20海里/时.根据以上信息,请你求出“中国渔政310”船赶往出事地点需要多少时间.
【答案】解:过点A作AD⊥BC于点D,
在Rt△ABD中,∵AB= ,∠B=60°,
∴AD=AB•sin60°= 。
在Rt△ADC中,AD= ,∠C=45°,
∴AC= AD=140。
∴“中国渔政310”船赶往出事地点所需时间为 =7小时。
答:“中国渔政310”船赶往出事地点需要7小时。
【考点】解直角三角形的应用(方向角问题),锐角三角函数定义,特殊角的三角函数值。
【分析】过点A作AD⊥BC于点D,在Rt△ABD中利用锐角三角函数的定义求出AD的值,同理在Rt△ADC中求出AC的值,再根据中国渔政310”船最大航速20海里/时求出所需时间即可。
7. (2012湖北黄冈8分)新星小学门口有一直线马路,为方便学生过马路,交警在门口设有一定宽度的
斑马线,斑马线的宽度为4 米,为安全起见,规定车头距斑马线后端的水平距离不得低于2 米,现有一旅
游车在路口遇红灯刹车停下,汽车里司机与斑马线前后两端的视角分别为∠FAE=15° 和∠FAD=30° .司机
距车头的水平距离为0.8 米,试问该旅游车停车是否符合上述安全标准?(E、D、C、B 四点在平行于斑马
线的同一直线上.)
(参考数据:tan15°=2- ,sin15°= cos15°= ≈1.732, ≈1.414)
【答案】解:∵∠FAE=15°,∠FAD=30°,∴∠EAD=15°。
∵AF∥BE,∴∠AED=∠FAE=15°,∠ADB=∠FAD=30°。
设AB=x,则在Rt△AEB中, 。
∵ED=4,ED+BD=EB,∴BD= -4。
在Rt△ADB中, ,
∴ ,即 ,解得x=2。
∴ 。
∵BD=CD+BC=CD+0.8,∴CD= -0.8≈2×1.732+0.8≈2.7>2,故符合标准。
答:该旅游车停车符合规定的安全标准。
【考点】解直角三角形的应用,锐角三角函数定义。
【分析】由∠FAE=15°,∠FAD=30°可知∠EAD=15°,根据AF∥BE可知∠AED=∠FAE=15°,∠ADB=∠FAD=30°,设AB=x,则在Rt△AEB中, ,在Rt△ADB中, ,联立两式即可求出CD的值。
19.8. (2012湖北随州8分)如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.
求证:(1)ΔABD≌ΔACD;(2)BE=CE
【答案】证明:(1)∵D是BC的中点,∴BD=CD。
在△ABD和△ACD中,∵BD=CD,AB=AC,AD=AD(公共边),
∴△ABC≌△ACD(SSS)。
(2)由(1)知△ABD≌△ACD,∴∠BAD=∠CAD,即∠BAE=∠CAE。
在△ABE和△ACE中, ∵AB=AC,∠BAE=∠CAD,AE=AE,
∴△ABE≌△ACE (SAS)。∴BE=CE(全等三角形的对应边相等)。
【考点】等腰三角形的性质,全等三角形的判定和性质。
【分析】(1)根据全等三角形的判定定理SSS可以证得△ABD≌△ACD。
(2)由(1)的全等三角形的对应角相等可以推知∠BAE=∠CAE;根据全等三角形的判定定理SAS推知△ABE≌△ACE;由全等三角形的对应边相等知BE=CE。
9. (2012湖北十堰6分)如图,在四边形ABCD中,AB=AD,CB=CD.求证:∠B=∠D.
【答案】证明:连接AC,
在△ABC和△ADC中,
∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS)。
∴∠B=∠D。
【考点】全等三角形的判定和性质。
【分析】连接AC,由于AB=AD,CB=CD,AC=AC,由SSS可证△ABC≌△ADC,于是∠B=∠D。
10. (2012湖北十堰8分)如图,为了测量某山AB的高度,小明先在山脚下C点测得山顶A的仰角为45°,然后沿坡角为30°的斜坡走100米到达D点,在D点测得山顶A的仰角为30°,求山AB的高度.(参考数据: ≈1.73)
标签: 暂无联系方式 初三数学试卷
相关文章
- 上一篇:2016年湖北中考数学方程(组)试题分类解析
- › 2016年高考地理复习:黄山与庐山简答题答题思路
- › 2016年高考历史备考:中外历史年事时间表
- › 2016年福建高考历史考试说明:部分考点有变化
- › 2016高考历史核心必考点:历史事件的巧记
- › 2016年高考历史复习:西周时期的政治制度
- › 2016高考生物高中生物知识点:光合作用
- › 2016年高考生物必备考点:生物的呼吸作用
- › 2016高考化学一轮复习:实验类试题
- › 2016高考备考:物理选择题轻松拿分的方法
- › 2016年高考物理命题趋势预测及指导
- › 2016年高考物理常用公式:恒定电流公式
- › 2016年高考物理三大题型试题解析