小智贝文库 :专注文档资料8年,极速海量,用心打造! 首页 |注册 |登录 |帮助

教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作

计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案

当前位置: 小智贝文库中小学教学初中学习网初三学习辅导初三数学辅导资料初三数学试卷2016年湖北三角形中考数学题分类解析

2016年湖北三角形中考数学题分类解析

[10-15 23:08:04]   来源:http://www.xiaozhibei.com  初三数学试卷   阅读:9806

【答案】解:过D作DE⊥BC于E,作DF⊥AB于F,设AB=x,

在Rt△DEC中,∠DCE=30°,CD=100,

∴DE=50,CE=50 。

在Rt△ABC中,∠ACB=45°,∴BC=x。

则AF=AB-BF=AB-DE=x-50,DF=BE=BC+CE=x+50 。

在Rt△AFD中,∠ADF=30°,tan30°= ,∴ 。

∴ (米)。

答:山AB的高度约为236.5米。

【考点】解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值。

【分析】易证△ABC是等腰直角三角形,直角△CDE中已知边CD和∠DCE=30°,则三角形的三边的长

度可以得到CE,DE的长度,设BC=x,则AE和DF即可用含x的代数式表示出来,在直角△AED中,

利用三角函数即可得到一个关于x的方程,即可求得x的值。

11. (2012湖北襄阳5分)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.

求证:AM=AN.

【答案】证明:∵△AEB由△ADC旋转而得,∴△AEB≌△ADC。∴∠EAB=∠CAD,∠EBA=∠C。

∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∠ABC=∠C。

∴∠EAB=∠DAB,∠EBA=∠DBA。

∵∠EBM=∠DBN,∴∠MBA=∠NBA。

又∵AB=AB,∴△AMB≌△ANB(ASA)。∴AM=AN。

【考点】等腰三角形的性质,旋转的性质,全等三角形的判定和性质。

【分析】根据旋转的性质可得△AEB≌△ADC,根据全等三角形对应角相等可得∠EAB=∠CAD,∠EBA=∠C,结合等腰三角形三线合一的性质即可推出∠EAB=∠DAB,∠EBA=∠DBA,从而推出∠MBA=∠NBA,然后根据“角边角”证明△AMB≌△ANB,根据全等三角形对应边相等即可得证。

12. (2012湖北鄂州8分)小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板如图位置摆放,A、B、C在同一直线上,EF∥AD,∠A=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8,试求BD的长。

【答案】解:如图,过点F作FH⊥AB于点H。

在Rt△DEF中,∠EDF=90°,∠E=60°,DE=8,∴∠DFE=30°,DF=DE•tan∠E=8 tan60°=8 。

∵ EF∥AD,∴∠FDH=∠DFE=30°。

在Rt△FDH中,FH= DF=4 ,HD==4 • =12。

又∵∠AF=90°,∠C=45°,∴HB= FH=4 。

∴BD=HD-HB=12-4 。

【考点】解直角三角形的应用,锐角三角函数定义,特殊角的三角函数值。

【分析】构造直角三角形FDH,分别解Rt△DEF和Rt△FDH即可。 

   www.xiaozhibei.com

上一页  [1] [2] [3] [4] 

标签: 暂无联系方式 初三数学试卷

相关文章