-
教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作
计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案
-
九年级上册数学期中试题及答案解析
[10-15 23:08:56] 来源:http://www.xiaozhibei.com 中考数学模拟题 阅读:9783次考点: 特殊角的三角函数值..
专题: 计算题.
分析: 直接根据sin60°= 进行解答即可.
解答: 解:∵sin60°= ,α是锐角,且 ,
∴α+15°=60°,
解得α=45°.
故答案为:45°.
点评: 本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.
11.(3分)小明沿着坡度为1:2的山坡向上走了100m,则他升高了 20 m .
考点: 解直角三角形的应用-坡度坡角问题..
分析: 首先根据题意画出图形,由小明沿着坡度为1:2的山坡向上走了100m,利用坡度的意义,根据三角函数的定义,即可求得答案.
解答: 解:如图,过点A作AE⊥BC于点E,
∵坡度为1:2,
∴i=tan∠B= = ,
∴sin∠B= ,
∵AB=100m,
∴AE= =20 (m).
即他升高了20 m.
故答案为:20 m.
点评: 此题考查了坡度坡角问题.此题难度不大,注意根据题意构造直角三角形,并解直角三角形;注意掌握数形结合思想的应用.
12.(3分)(2008•濮阳)某花木场有一块如等腰梯形ABCD的空地(如图),各边的中点分别是E、F、G、H,用篱笆围成的四边形EFGH场地的周长为40cm,则对角线AC= 20 cm.
考点: 等腰梯形的性质;三角形中位线定理..
分析: 利用等腰梯形和中位线定理和已知条件,即可推出结论.
解答: 解:∵等腰梯形的对角线相等,EF、HG、GF、EF均为梯形的中位线,∴EF=HG=GF=EF= AC.
又∵EF+HG+GF+EF=40cm,即2AC=40cm,则AC=20cm.对角线AC=20cm.
点评: 本题考查的是等腰梯形的性质即三角形中位线的性质,属一般题目.
13.(3分)最简二次根式 与 是同类二次根式,则xy= 9 .
考点: 同类二次根式..
专题: 计算题.
分析: 由同类二次根式的定义得到根指数相等,被开方数相等,列出方程,求出x与y的值,即可确定出xy的值.
解答: 解:根据题意得:x2﹣3=2x,y﹣1=2,且x2﹣3=2x≥0,
x2﹣2x﹣3=0,即(x﹣3)(x+1)=0,
解得:x=3或x=﹣1(舍去),y=3,
则xy=9.
故答案为:9
点评: 此题考查了同类二次根式,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.
14.(3分)关于x的方程mx2﹣(2m﹣1)x+m﹣2=0有两个实数根,则m的取值范围是 m 且m≠0 .
考点: 根的判别式;一元二次方程的定义..
分析: 根据方程有两个实数根,得到根的判别式大于等于0,列出关于m的不等式,求出不等式的解集,即可得到m的范围.
解答: 解:∵关于x的方程mx2﹣(2m﹣1)x+m﹣2=0有两个实数根,
∴△=b2﹣4ac=(2m﹣1) 2﹣4m(m﹣2)≥0,
解得:m≥﹣ ,
则m的取值范围是m≥﹣ 且m≠0.
故答案为:m 且m≠0.
点评: 此题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.同时考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的定义.
15.(3分)若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm、深约为2 cm的小坑,则该铅球的直径约为 14.5 cm.
考点: 垂径定理的应用;勾股定理..
专题: 应用题.
分析: 根据题意,把实际问题抽象成几何问题,即圆中与弦有关的问题,根据垂径定理,构造直角三角形,小坑的直径就是圆中的弦长,小坑的深就是拱高,利用勾股定理,设出未知数,列出方程,即可求出铅球的直径.
解答: 解:根据题意,画出图形如图所示,
由题意知,AB=10,CD=2,OD是半径,且OC⊥AB,
∴AC=CB=5,
设铅球的半径为r,则OC=r﹣2,
在Rt△AOC中,根据勾股定理,OC2+AC2=OA2,
即(r﹣2)2+52=r2,
解得:r=7.25,
所以铅球的直径为:2×7.25=14.5 cm.
点评: 解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+( )2成立,知道这三个量中的任意两个,就可以求出另外一个.
16.(3分)如图,⊙O的直径AB与弦CD相交于点E,若AE=7,BE=1,cos∠AED= ,则CD= 2 .
考点: 垂径定理;勾股定理;解直角三角形..
专题: 计算题.
分析: 过O作OF⊥CD,交CD于点F,利用垂径定理得到DF=CF,连接OD,有AE+BE求出AB的长,进而确定出OB的长,由OB﹣EB求出OE的长,在直角三角形OEF中,利用锐角三角函数定义求出EF的长,利用勾股定理求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长.
解答: 解:过O作OF⊥CD,交CD于点F,可得DF=CF,连接OD,
∵AE=7,BE=1,
∴OB=OD= AB= ×8=4,OE=OB﹣EB=3,
在Rt△OEF中,OE=3,cos∠AED= ,
∴EF=OEcos∠AED=2,根据勾股定理得:OF= = ,
在Rt△ODF中,根据勾股定理得:DF= = ,
则CD=2DF=2 .
故答案为:2 .
点评: 此题考查了垂径定理,勾股定理,以及解直角三角形,熟练掌握垂径定理是解本题的关键.
17.(3分)如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为 2.3 .
考点: 梯形;等腰三角形的性质;勾股定理;三角形中位线定理..
专题: 计算题.
分析: 延长AF至BC延长线上交于G点,由已知可证明∠AGB=∠EAG,则EF为△ABG的中位线,得出EF=3,还可证明FG=4,由勾股定理得EG=5,则求得CE的长为2.3.
解答: 解:延长AF至BC延长线上交于G点,
∵AE=BE,
∴∠ABE=∠BAE,
∵AF⊥AB,
∴∠ABE+∠AGB=90°,∠BAE+∠EAG=90°,
∴∠AGB=∠EAG,
∴∠ABE=∠AGE,
∴AE=EG,
∴GE=BE,
∴E为BG中点,
∴EF是△ABG的中位线,
故可得:EF= AB=3,FG=AF=4,
∴AG=8,
∴BG=10,
∴EG=5,
∵AF⊥AB,AE=BE,
∴点E是BG的中点,
∴EG=BE=5,
∴可得△EFG为直角三角形,
∴CE=EG﹣CG=EG﹣AD=5﹣2.7=2.3.
故答案为:2.3.
点评: 本题考查了三角形的中位线定理、等腰三角形的性质和勾股定理,是一道综合题,难度较大.
18.(3分)如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则sin∠APD的值是 .
考点: 相似三角形的判定与性质;勾股定理;锐角三角函数的定义..
专题: 网格型.
分析: 首先连接BE,AE,过点A作AF⊥BE于点F,由勾股定理即可得AB=AE= ,BE= ,则可求得AF的长,继而可求得答案.
标签: 暂无联系方式 中考数学模拟题
相关文章