小智贝文库 :专注文档资料8年,极速海量,用心打造! 首页 |注册 |登录 |帮助

教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作

计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案

当前位置: 小智贝文库中小学教学初中学习网初三学习辅导初三数学辅导资料初三数学试卷2016年浙江省中考数学函数的图象与性质试题分类解析

2016年浙江省中考数学函数的图象与性质试题分类解析

[10-15 23:19:20]   来源:http://www.xiaozhibei.com  初三数学试卷   阅读:9903

∴最大值为8。

【考点】二次函数的最值。

【分析】首先根据函数有最大值得到k的取值范围,然后判断即可。求最大值时将函数解析式化为顶点式或用公式即可。

2. (2012浙江杭州12分)在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k).

(1)当k=﹣2时,求反比例函数的解析式;

(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;

(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.

【答案】解:(1)当k=﹣2时,A(1,﹣2),

∵A在反比例函数图象上,∴设反比例函数的解析式为: 。

将A(1,﹣2)代入得: ,解得:m=﹣2。

∴反比例函数的解析式为: 。

(2)∵要使反比例函数和二次函数都是y随着x的增大而增大,∴k<0。

∵二次函数y=k(x2+x﹣1)= ,∴它的对称轴为:直线x=﹣ 。

要使二次函数y=k(x2+x﹣1)满足上述条件,在k<0的情况下,x必须在对称轴的左边,即x<﹣ 时,才能使得y随着x的增大而增大。

∴综上所述,k<0且x<﹣ 。

(3)由(2)可得:Q 。

∵△ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,(如图是其中的一种情况)

∴原点O平分AB,∴OQ=OA=OB。

作AD⊥OC,QC⊥OC,垂足分别为点C,D。

∴ 。

∵ ,

∴ ,解得:k=± 。

【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,反比例函数和二次函数的性质。

【分析】(1)当k=﹣2时,即可求得点A的坐标,然后设反比例函数的解析式为: ,利用待定系数法即可求得答案;

(2)由反比例函数和二次函数都是y随着x的增大而增大,可得k<0。

又由二次函数y=k(x2+x﹣1)的对称轴为x=﹣ ,可得x<﹣ 时,才能使得y随着x的增大而增大。

(3)由△ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,利用直角三角形斜边上的中线等于斜边的一半,即可得OQ=OA=OB,又由Q ,A(1,k),即可得 ,从而求得答案。

3. (2012浙江湖州6分)如图,已知反比例函数 (k≠0)的图象经过点(-2,8).

(1)求这个反比例函数的解析式;

(2)若(2,y1),(4,y2)是这个反比例函数图象上的两个点,请比较y1、y2的大小,并说明理由.

【答案】解:(1)把(-2,8)代入 ,得 ,解得:k=-16。

∴这个反比例函数的解析式为 。 (2)y1

∵k=-16<0,∴在每一个象限内,函数值y随x的增大而增大。

∵点(2,y1),(4,y2)都在第四象限,且2<4,

∴y1

【考点】曲线上点的坐标与方程的关系,反比例函数图象上点的坐标特征。

【分析】(1)把经过的点的坐标代入解析式进行计算即可得解。

(2)根据反比例函数图象的性质,在每一个象限内,函数值y随x的增大而增大解答。

4. (2012浙江嘉兴、舟山10分)如图,一次函数y1=kx+b的图象与反比例函数 的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).

(1)求这两个函数的解析式;

(2)当x取何值时,y1>y2.

【答案】解:(1)把 A(2,3)代入 ,得m=6。

∴反比例函数的解析式为 。

把 A(2,3)、C(8,0)代入y1=kx+b,得

,解得 。

∴一次函数的解析式为y1= x+4。

(2)由题意得 ,解得 , 。

∴从图象可得,当x<0 或 2

【考点】反比例函数与一次函数的交点问题,曲线上点的坐标与方程的关系。

【分析】(1)将A、B中的一点代入 ,即可求出m的值,从而得到反比例函数解析式;把 A(2,3)、C(8,0)代入y1=kx+b,可得到k、b的值,从而得到一次函数解析式。

(2)求出反比例函数与一次函数图象的交点坐标,根据图象可直接得到y1>y2时x的取值范围。

5. (2012浙江嘉兴、舟山12分)某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出)

(1)公司每日租出x辆车时,每辆车的日租金为   元(用含x的代数式表示);

(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?

(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?

6. (2012浙江嘉兴、舟山14分)在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接 OP,过点0作OP的垂线交抛物线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m.

(1)如图1,当m= 时,

①求线段OP的长和tan∠POM的值;

②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标;

(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E.

①用含m的代数式表示点Q的坐标;

②求证:四边形ODME是矩形.

【答案】解:(1)①把x= 代入 y=x2,得 y=2,∴P( ,2),∴OP= 。

∵PA丄x轴,∴PA∥MO.∴ 。

②设 Q(n,n2),∵tan∠QOB=tan∠POM,∴ .∴ 。

∴Q( )。∴OQ= 。

∴当 OQ=OC 时,则C1(0, ),C2(0,- )。

当 OQ=CQ 时,则 C3(0,1)。

(2)①∵点P的横坐标为m,∴P(m,m2)。设 Q(n,n2),

∵△APO∽△BOQ,∴ 。∴ ,得 。

∴Q( )。

②设直线PO的解析式为:y=kx+b,把P(m,m2)、Q( )代入,得:

,解得b=1。∴M(0,1)。

∵ ,∠QBO=∠MOA=90°,∴△QBO∽△MOA。

∴∠MAO=∠QOB,∴QO∥MA。

同理可证:EM∥OD。

又∵∠EOD=90°,∴四边形ODME是矩形。

【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,勾股定理,平行的判定和性质,锐角三角函数定义,等腰三角形的性质,相似三角形的判定和性质,矩形的判定。

【分析】(1)①已知m的值,代入抛物线的解析式中可求出点P的坐标;由此确定PA、OA的长,通过解直角三角形易得出结论。

②题目要求△OCQ是以OQ为腰的等腰三角形,所以分QO=OC、QC=QO两种情况来判断:

QO=QC时,Q在线段OC的垂直平分线上,Q、O的纵坐标已知,C点坐标即可确定;

QO=OC时,先求出OQ的长,那么C点坐标可确定。

(2)①由∠QOP=90°,易求得△QBO∽△MOA,通过相关的比例线段来表示出点Q的坐标。

②在四边形ODME中,已知了一个直角,只需判定该四边形是平行四边形即可,那么可通过证明两组对边平行来得证。

7. (2012浙江丽水、金华8分)如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y= (k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.

(1)求该双曲线所表示的函数解析式;

(2)求等边△AEF的边长.

【答案】解:(1) 过点C作CG⊥OA于点G,

∵点C是等边△OAB的边OB的中点,

∴OC=2,∠ AOB=60°。∴OG=1,CG= ,

∴点C的坐标是(1, )。由 ,得:k= 。

上一页  [1] [2] [3] [4] [5]  下一页

标签: 暂无联系方式 初三数学试卷

相关文章