小智贝文库 :专注文档资料8年,极速海量,用心打造! 首页 |注册 |登录 |帮助

教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作

计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案

当前位置: 小智贝文库中小学教学初中学习网初三学习辅导初三数学辅导资料初三数学试卷2016年浙江省中考数学函数的图象与性质试题分类解析

2016年浙江省中考数学函数的图象与性质试题分类解析

[10-15 23:19:20]   来源:http://www.xiaozhibei.com  初三数学试卷   阅读:9903

11. (2012浙江绍兴12分)把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计)。

(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子。

①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?

②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由。

(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况)。

【答案】解:(1)①设剪掉的正方形的边长为xcm。

则(40-2x)2=484,解得 (不合题意,舍去), 。

∴剪掉的正方形的边长为9cm。

②侧面积有最大值。

设剪掉的正方形的边长为xcm,盒子的侧面积为ycm2,

则y与x的函数关系为: ,

∴x=10时,y最大=800。

即当剪掉的正方形的边长为10cm时,长方形盒子的侧面积最大为800cm2。

(2)在如图的一种剪裁图中,设剪掉的正方形的边长为xcm。

则 ,

解得: (不合题意,舍去), 。

∴剪掉的正方形的边长为15cm。

此时长方体盒子的长为15cm,宽为10cm,高为5cm。

【考点】二次函数的应用,一元二次方程的应用。

【分析】(1)①假设剪掉的正方形的边长为xcm,根据题意得出(40-2x)2=484,求出即可

②假设剪掉的正方形的边长为xcm,盒子的侧面积为ycm2,则y与x的函数关系为:y=4(40-2x)x,利用二次函数最值求出即可。

(2)假设剪掉的正方形的边长为xcm,利用折成的一个长方形盒子的表面积为550cm2,得出等式方程求出即可。

12. (2012浙江台州8分)如图,正比例函数y=kx(x≥0)与反比例函数 的图象交于点

A(2,3),

(1)求k,m的值;

(2)写出正比例函数值大于反比例函数值时自变量x的取值范围.

【答案】解:(1)把(2,3)代入y=kx得:3=2k,∴ k= 。

把(2,3)代入 得:m=6。

(2)x>2。

【考点】曲线上点的坐标与方程的关系,正比例函数和反比例函数图象的性质。

【分析】(1)根据点在曲线上,点的坐标满足方程的关系,将A(2,3)分别代入y=kx和 即可求得k,m的值。

(2)由图象可知,当正比例函数值大于反比例函数值时,正比例函数的图象在反比例函数的图象上方,∴自变量x的取值范围是x>2。

13. (2012浙江台州12分)某汽车在刹车后行驶的距离s(单位:米)与时间t(单位:秒)之间的关系得部分数据如下表:

时间t(秒) 0 0.2 0.4 0.6 0.8 1.0 1.2 …

行驶距离s(米) 0 2.8 5.2 7.2 8.8 10 10.8 …

(1)根据这些数据在给出的坐标系中画出相应的点;

(2)选择适当的函数表示s与t之间的关系,求出相应的函数解析式;

(3)①刹车后汽车行驶了多长距离才停止?

②当t分别为t1,t2(t1

【答案】解:(1)描点图所示:

(2)由散点图可知该函数为二次函数。设二次函数的解析式为:s=at2+bt+c,

∵抛物线经过点(0,0),∴c=0。

又由点(0.2,2.8),(1,10)可得:

,解得: 。

经检验,其余各点均在s=-5t2+15t上。

∴二次函数的解析式为: 。

(3)①汽车刹车后到停止时的距离即汽车滑行的最大距离。

∵ ,∴当t= 时,滑行距离最大,为 。

因此,刹车后汽车行驶了 米才停止。

②∵ ,∴ 。

∴ 。

∵t1

其实际意义是刹车后到t2时间内的平均速到t1时间内的度小于刹车后平均速度。

【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,二次函数的性质和应用,不等式的应用。

【分析】(1)描点作图即可。

(2)首先判断函数为二次函数。用待定系数法,由所给的任意三点即可求出函数解析式。

(3)将函数解析式表示成顶点式(或用公式求),即可求得答案。

(4)求出 与 ,用差值法比较大小。

14. (2012浙江温州14分)如图,经过原点的抛物线 与x轴的另一个交点为A.过点 作直线 轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连结CB,CP。

(1)当 时,求点A的坐标及BC的长;

(2)当 时,连结CA,问 为何值时CA⊥CP?

(3)过点P作PE⊥PC且PE=PC,问是否存在 ,使得点E落在坐标轴上?若存在,求出所有满足要求的 的值,并写出相对应的点E坐标;若不存在,请说明理由。

【答案】解:(1)当m=3时,y=-x2+6x。

令y=0得-x2+6x=0,解得,x1=0,x2=6。∴A(6,0)。

当x=1时,y=5。∴B(1,5)。

∵抛物线y=-x2+6x的对称轴为直线x=3,且B,C关于对称轴对称,∴BC=4。

(2)过点C作CH⊥x轴于点H(如图1)

由已知得,∠ACP=∠BCH=90°,∴∠ACH=∠PCB。

又∵∠AHC=∠PBC=90°,∴△AGH∽△PCB。

∴ 。

∵抛物线y=-x2+2mx的对称轴为直线x=m,其中m>1,且B,C关于对称轴对称,

∴BC=2(m-1)。

∵B(1,2m-1),P(1,m),∴BP=m-1。

又∵A(2m,0),C(2m-1,2m-1),∴H(2m-1,0)。

∴AH=1,CH=2m-1,

∴ ,解得m= 。

(3)存在。∵B,C不重合,∴m≠1。

(I)当m>1时,BC=2(m-1),PM=m,BP=m-1,

(i)若点E在x轴上(如图1),

∵∠CPE=90°,∴∠MPE+∠BPC=∠MPE+∠MEP=90°,PC=EP。

∴△BPC≌△MEP,∴BC=PM,即2(m-1)=m,解得m=2。

此时点E的坐标是(2,0)。

(ii)若点E在y轴上(如图2),过点P作PN⊥y轴于点N,

易证△BPC≌△NPE,

∴BP=NP=OM=1,即m-1=1,解得,m=2。

此时点E的坐标是(0,4)。

(II)当0

(i)若点E在x轴上(如图3),

易证△BPC≌△MEP,

∴BC=PM,即2(1-m)=m,解得,m= 。

此时点E的坐标是( ,0)。

(ii)若点E在y轴上(如图4),

过点P作PN⊥y轴于点N,易证△BPC≌△NPE,

∴BP=NP=OM=1,即1-m=1,∴m=0(舍去)。

综上所述,当m=2时,点E的坐标是(0,2)或(0,4),

当m= 时,点E的坐标是( ,0)。

【考点】二次函数综合题,曲线上点的坐标与方程的关系,二次函数的性质,相似三角形的判定和性质,全等三角形的判定和性质。

【分析】(1)把m=3,代入抛物线的解析式,令y=0解方程,得到的非0解即为和x轴交点的横坐标,再求出抛物线的对称轴方程,从而求出BC的长。

(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°,利用已知条件证明

△AGH∽△PCB,根据相似的性质得到: ,再用含有m的代数式表示出BC,CH,BP,代入比例式即可求出m的值。

(3)存在。本题要分当m>1时,BC=2(m-1),PM=m,BP=m-1和当0

15. (2012浙江义乌8分)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数 (k≠0)在第一象限内的图象经过点D、E,且tan∠BOA= .

上一页  [1] [2] [3] [4] [5]  下一页

标签: 暂无联系方式 初三数学试卷

相关文章