小智贝文库 :专注文档资料8年,极速海量,用心打造! 首页 |注册 |登录 |帮助

教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作

计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案

当前位置: 小智贝文库中小学教学初中学习网初三学习辅导初三数学辅导资料初三数学试卷最近三年中考数学直角三角形与勾股定理真题整理汇集

最近三年中考数学直角三角形与勾股定理真题整理汇集

[10-15 23:19:38]   来源:http://www.xiaozhibei.com  初三数学试卷   阅读:9276

由题意得 , ,由勾股定理,得 .所以 .

【答案】

【点评】本题从物理学角度综合考查了平面直角坐标系中点的坐标应用、

轴对称性质以及勾股定理等.难度中等

14.(2012•资阳)直角三角形的两边长分别为16和12,则此三角形的外接圆半径是 10或8 .

考点: 三角形的外接圆与外心;勾股定理。

专题: 探究型。

分析: 直角三角形的外接圆圆心是斜边的中点,那么半径为斜边的一半,分两种情况:①16为斜边长;②16和12为两条直角边长,由勾股定理易求得此直角三角形的斜边长,进而可求得外接圆的半径.

解答: 解:由勾股定理可知:

①当直角三角形的斜边长为16时,这个三角形的外接圆半径为8;

②当两条直角边长分别为16和12,则直角三角形的斜边长= =20,

因此这个三角形的外接圆半径为10.

综上所述:这个三角形的外接圆半径等于8或10.

故答案为:10或8.

点评: 本题考查的是直角三角形的外接圆半径,重点在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆.

15.(2012无锡) 如图,△ABC中,∠ACB=90°,AB=8cm,D是AB的中点.现将△BCD沿BA方向平移1cm,得到△EFG,FG交AC于H,则GH的长等于 3 cm.

考点:直角三角形斜边上的中线;等腰三角形的判定与性质;平移的性质。

分析:利用直角三角形斜边上的中线等于斜边的一半知AD=BD=CD=AB=4cm;然后由平移的性质推知GH∥CD;最后根据平行线截线段成比例列出比例式,即可求得GH的长度.

解答:解:∵△ABC中,∠ACB=90°,AB=8cm,D是AB的中点,

∴AD=BD=CD=AB=4cm;

又∵△EFG由△BCD沿BA方向平移1cm得到的,

∴GH∥CD,GD=1cm,

∴ = ,即 = ,

解得,GH=3cm;

故答案是:3.

点评:本题考查了直角三角形斜边上的中线、平移的性质.运用“直角三角形斜边上的中线等于斜边的一半”求得相关线段的长度是解答此题的关键.

16.(2012黔西南州)如图6,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,则四边形ACEB的周长为______________.

【解析】由于∠ACB=90°,DE⊥BC,所以AC∥DE.又CE∥AD,所以四边形ACED是平行四边形,所以DE=AC=2.

在Rt△CDE中,由勾股定理CD=CD2―DE2=23.又因为D是BC的中点,所以 BC=2CD=43.

在Rt△ABC中,由勾股定理AB=AC2+BC2=213.

因为D是BC的中点,DE⊥BC,所以EB=EC=4,所以四边形ACEB的周长=AC+CE+BE+BA=10+213.

【答案】10+213.

【点评】本题是一个几何的综合计算题,尽管难度不大,但综合考查了平行四边形、垂直平分线的性质和判定,理清思路,找准图形中的相等线段,并不难解决.

三.解答题

17.(2012菏泽)如图,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,P1,P2,P3,P4,P5是△DEF边上的5个格点,请按要求完成下列各题:

(1)试证明三角形△ABC为直角三角形;

(2)判断△ABC和△DEF是否相似,并说明理由;

(3)画一个三角形,使它的三个顶点为P1,P2,P3,P4,P5中的3个格点并且与△ABC相似(要求:用尺规作图,保留痕迹,不写作法与证明).

考点:作图—相似变换;勾股定理的逆定理;相似三角形的判定。

解答:解:(1)根据勾股定理,得AB=2 ,AC= ,BC=5;

显然有AB2+AC2=BC2,

根据勾股定理的逆定理得△ABC 为直角三角形;

(2)△ABC和△DEF相似.

根据勾股定理,得AB=2 ,AC= ,BC=5,

DE=4 ,DF=2 ,EF=2 .

= = = ,

∴△ABC∽△DEF.

(3)如图:连接P2P5,P2P4,P4P5,

∵P2P5= ,P2P4= ,P4P5=2 ,

AB=2 ,AC= ,BC=5,

∴ = = = ,

∴,△ABC∽△P2P4 P5.

2011年全国各地中考数学真题分类汇编

第24章 直角三角形与勾股定理

一、选择题

1. (2011山东滨州,9,3分)在△ABC中,∠C=90°, ∠C=72°,AB=10,则边AC的长约为(精确到0.1)( )

A.9.1 B.9.5 C.3.1 D.3.5

【答案】C

2. (2011山东烟台,7,4分)如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是( )

A2m B.3m

C.6m D.9m

【答案】C

3. (2011台湾全区,29)已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走

80公尺后,可到神仙百货,则阿虎向西直走多少公尺后,他与神仙百货的距离为340公尺?

A. 100 B. 180 C. 220 D. 260

【答案】C

4. (2011湖北黄石,7,3分)将一个有45度角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30度角,如图(3),则三角板的最大边的长为

A. 3cm B. 6cm C. 3 cm D. 6 cm

【答案】D

5. (2011贵州贵阳,7,3分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是

(第7题图)

(A)3.5 (B)4.2 (C)5.8 (D)7

【答案】D

6. (2011河北,9,3分)如图3,在△ABC中,∠C=90°,BC=6,D,E分别在AB,AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为( )

A. B.2 C.3 D.4

【答案】B

7.

8.

二、填空题

1. (2011山东德州13,4分)下列命题中,其逆命题成立的是______________.(只填写序号)

①同旁内角互补,两直线平行;

②如果两个角是直角,那么它们相等;

③如果两个实数相等,那么它们的平方相等;

④如果三角形的三边长a,b,c满足 ,那么这个三角形是直角三角形.

【答案】① ④

2. (2011浙江温州,16,5分)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.

若S1,S2,S3=10,则S2的值是 .

【答案】

3. (2011重庆綦江,16,4分) 一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米. 当正方形DEFH运动到什么位置,即当AE= 米时,有DC=AE+BC.

【答案】:

4. (2011四川凉山州,15,4分)把命题“如果直角三角形的两直角边长分别为a、b,斜边长为c,那么 ”的逆命题改写成“如果……,那么……”的形式:

【答案】如果三角形三边长a,b,c,满足 ,那么这个三角形是直角三角形

5. (2011江苏无锡,16,2分)如图,在Rt△ABC中,∠ACB = 90°,D、E、F分别是AB、BC、CA的中点,若CD = 5cm,

则EF = _________cm.

【答案】5

6. (2011广东肇庆,13,3分)在直角三角形ABC中,∠C = 90°,BC = 12,AC = 9,则AB= ▲ .

【答案】15

上一页  [1] [2] [3] [4]  下一页

标签: 暂无联系方式 初三数学试卷

相关文章