小智贝文库 :专注文档资料8年,极速海量,用心打造! 首页 |注册 |登录 |帮助

教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作

计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案

当前位置: 小智贝文库中小学教学初中学习网初三学习辅导初三数学辅导资料初三数学试卷最近三年中考数学直角三角形与勾股定理真题整理汇集

最近三年中考数学直角三角形与勾股定理真题整理汇集

[10-15 23:19:38]   来源:http://www.xiaozhibei.com  初三数学试卷   阅读:9276

以下是www.xiaozhibei.com为您推荐的最近三年中考数学直角三角形与勾股定理真题整理汇集,希望本篇文章对您学习有所帮助。

 最近三年中考数学直角三角形与勾股定理真题整理汇集

一.选择题

1.(2012•广州)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是(  )

A.   B.   C.  D.

考点: 勾股定理;点到直线的距离;三角形的面积。

专题: 计算题。

分析: 根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.

解答: 解:根据题意画出相应的图形,如图所示:

在Rt△ABC中,AC=9,BC=12,

根据勾股定理得:AB= =15,

过C作CD⊥AB,交AB于点D,

又S△ABC=AC•BC=AB•CD,

∴CD= = = ,

则点C到AB的距离是 .

故选A

点评: 此题考查了勾股定理,点到直线的距离,以及三角形面积的求法,熟练掌握勾股定理是解本题的关键.

2.(2012毕节)如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E式垂足,连接CD,若BD=1,则AC的长是( )

A.2 B.2 C.4 D. 4

解析:求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,

求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.

解答:解:∵∠A=30°,∠B=90°,∴∠ACB=180°-30°-90°=60°,

∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°-30°=30°,

∵BD=1,∴CD=2=AD,∴AB=1+2=3,

在△BCD中,由勾股定理得:CB= ,在△ABC中,由勾股定理得:AC= = ,故选A.

点评:本题考查了线段垂直平分线,含30度角的直角三角形,等腰三角形的性质,三角形的内角和定理等知识点的应用,主要考查学生运用这些定理进行推理的能力,题目综合性比较强,难度适中.

3.(2012湖州)如图,在Rt△ABC中,∠ACB=900,AB=10,CD是AB边上的中线,则CD的长是( )

A.20 B.10 C.5 D.

【解析】直角三角形斜边上的中线等于斜边的一半,故CD= AB= ×10=5.

【答案】选:C.

【点评】此题考查的是直角三角形的性质,属于基础题。

4.(2012安徽)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )

A.10 B. C. 10或 D.10或

解析:考虑两种情况.要分清从斜边中点向哪个边沿着垂线段过去裁剪的.

解答:解:如下图, ,

故选C.

点评:在几何题没有给出图形时,有的同学会忽略掉其中一种情况,错选A或B;故解决本题最好先画出图形,运用数形结合和分类讨论的数学思想进行解答,避免出现漏解.

5. (2012•荆门)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是(  )

A. B. C. D.

解析:根据勾股定理,AB= =2 ,

BC= = ,

AC= = ,

所以△ABC的三边之比为 :2 : =1:2: ,

A、三角形的三边分别为2, = , =3 ,三边之比为2: :3 = : :3,故本选项错误;

B、三角形的三边分别为2,4, =2 ,三边之比为2:4:2 =1:2: ,故本选项正确;

C、三角形的三边分别为2,3, = ,三边之比为2:3: ,故本选项错误;

D、三角形的三边分别为 = , = ,4,三边之比为 : :4,故本选项错误.

故选B.

6. ( 2012巴中)如图3,已知AD是△ABC的

BC边上的高,下列能使△ABD≌△ACD的条件是( )

A.AB=AC B.∠BAC=900

C.BD=AC D.∠B=450

【解析】由条件A,与直角三角形全等的判定“斜边、直角边”

可判定△ABD≌△ACD,其它条件均不能使

△ABD≌△ACD,故选A

【答案】A

【点评】本题考查直角三角形全等的判定“斜边、直角边”应用.

二.填空题

7.( 2012巴中)已知a、b、c是△ABC的三边长,且满足关系c2-a2-b2 +|a-b|=0,则△ABC的形状为______

【解析】由关系c2-a2-b2 +|a-b|=0,得c2-a2-b2=0,即a2+b2= c2,且a-b=0即a=b,∴△ABCJ是等腰直角三角形. 应填等腰直角三角形.

【答案】等腰直角三角形

【点评】本题考查非负数的一个性质: “两个非负数之和为零时,这两个非负数同时为零.”及勾股定理逆定理的应用.

8(2012泸州)如图,在△ABC中,∠C=90°,∠A=30°,若AB=6cm,则BC= .

解析:在直角三角形中,根据30°所对的直角边等于斜边

的一半,所以BC= AB= ×6=3(cm).

答案:3cm.

点评:30°所对的直角边等于斜边的一半,是直角三角形性质,

要注意前提条件是直角三角形.

9.(2012青岛)如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为 cm.

【解析】将圆柱展开,AB= .

【答案】15

【点评】本题考查圆柱的侧面展开为矩形,关键是在矩形上找出A和B两点的位置,据“两点之间线段最短”得出结果.“化曲面为平面”,利用勾股定理解决.要注意展开后有一直角边长是9cm而不是18 cm.

10.(2012河北)如图7, 相交于点 , 于点 ,若 ,则 等于   .

对顶角相等,直角三角形两锐角互余

观察图形得知 与 是对顶角, ,又在 中,两锐角互余,

11.(2012南州)如图1,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为( )

A、(2,0) B、( ) C、( ) D、( )

解析:在 中, ,所以 ,所以 ,故 .

答案:C.

点评:本题考查矩形、勾股定理、圆弧及数轴知识,是一道综合性的题目,比较简单,难度较小.

12.(2012临沂)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE= cm.

考点:直角三角形的性质,全等三角形的判定与性质。

解答:解:∵∠ACB=90°,

∴∠ECF+∠BCD=90°,

∵CD⊥AB,

∴∠BCD+∠B=90°,

∴∠ECF=∠B,

在△ABC和△FEC中, ,

∴△ABC≌△FEC(ASA),

∴AC=EF,

∵AE=AC﹣CE,BC=2cm,EF=5cm,

∴AE=5﹣2=3cm.

故答案为:3.

13.(2012陕西)如图,从点 发出的一束光,经 轴反射,过点 ,则这束光从点 到点 所经过路径的长为 .

【解析】设这一束光与 轴交与点 ,作点 关于 轴的对称点 ,过 作 轴

于点 .由反射的性质,知 这三点在同一条直线上.再由轴对称的性质知 .则 .

[1] [2] [3] [4]  下一页

标签: 暂无联系方式 初三数学试卷

相关文章