-
教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作
计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案
-
理科高三数学教案:三角函数
[10-15 23:17:49] 来源:http://www.xiaozhibei.com 高三数学教案 阅读:9803次典例精析
题型一 “五点法”作函数图象
【例1】设函数f(x)=sin ωx+3cos ωx(ω>0)的周期为π.
(1)求它的振幅、初相;
(2)用五点法作出它在长度为一个周期的闭区间上的图象;
(3)说明函数f(x)的图象可由y=sin x的图象经过怎样的变换得到.
【解析】(1)f(x)=sin ωx+3cos ωx=2(12sin ωx+32cos ωx)=2sin(ωx+π3),
又因为T=π,所以2πω=π,即ω=2,所以f(x)=2sin(2x+π3),
所以函数f(x)=sin ωx+3cos ωx(ω>0)的振幅为2,初相为π3.
(2)列出下表,并描点画出图象如图所示.
(3)把y=sin x图象上的所有点向左平移π3个单位,得到y=sin(x+π3)的图象,再把
y=sin(x+π3)的图象上的所有点的横坐标缩短到原来的12(纵坐标不变),得到y=sin(2x+π3)的图象,然后把y=sin(2x+π3)的图象上的所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y=2sin(2x+π3)的图象.
【点拨】用“五点法”作图,先将原函数化为y=Asin(ωx+φ)(A>0,ω>0)形式,再令ωx+φ=0,π2,π,3π2,2π求出相应的x值及相应的y值,就可以得到函数图象上一个周期内的五个点,用平滑的曲线连接五个点,再向两端延伸即可得到函数在整个定义域上的图象.
【变式训练1】函数
的图象如图所示,则( )
A.k=12,ω=12,φ=π6
B.k=12,ω=12,φ=π3
C.k=12,ω=2,φ=π6
D.k=-2,ω=12,φ=π3
【解析】本题的函数是一个分段函数,其中一个是一次函数,其图象是一条直线,由图象可判断该直线的斜率k=12.另一个函数是三角函数,三角函数解析式中的参数ω由三角函数的周期决定,由图象可知函数的周期为T=4×(8π3-5π3)=4π,故ω=12.将点(5π3,0)代入解析式y=2sin(12x+φ),得12×5π3+φ=kπ,k∈Z,所以φ=kπ-5π6,k∈Z.结合各选项可知,选项A正确.
题型二 三角函数的单调性与值域
【例2】已知函数f(x)=sin2ωx+3sin ωxsin(ωx+π2)+2cos2ωx,x∈R(ω>0)在y轴右侧的第一个最高点的横坐标为π6.
(1)求ω的值;
(2)若将函数f(x)的图象向右平移π6个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的最大值及单调递减区间.
【解析】(1)f(x)=32sin 2ωx+12cos 2ωx+32=sin(2ωx+π6)+32.
令2ωx+π6=π2,将x=π6代入可得ω=1.
(2)由(1)得f(x)=sin(2x+π6)+32,经过题设的变化得到函数g(x)=sin(12x-π6)+32,
当x=4kπ+43π,k∈Z时,函数g(x)取得最大值52.
令2kπ+π2≤12x-π6≤2kπ+32π,
即[4kπ+4π3,4kπ+103π](k∈Z)为函数的单调递减区间.
【点拨】本题考查三角函数恒等变换公式的应用、三角函数图象性质及变换.
【变式训练2】若将函数y=2sin(3x+φ)的图象向右平移π4个单位后得到的图象关于点(π3,0)对称,则|φ|的最小值是( )
A.π4 B.π3 C.π2 D.3π4
【解析】将函数y=2sin(3x+φ)的图象向右平移π4个单位后得到y=2sin[3(x-π4)+φ]=2sin(3x-3π4+φ)的图象.
因为该函数的图象关于点(π3,0)对称,所以2sin(3×π3-3π4+φ)=2sin(π4+φ)=0,
故有π4+φ=kπ(k∈Z),解得φ=kπ-π4(k∈Z).
当k=0时,|φ|取得最小值π4,故选A.
题型三 三角函数的综合应用
【例3】已知函数y=f(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<π2)的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2).
(1)求φ的值;
(2)求f(1)+f(2)+…+f(2 008).
【解析】(1)y=Asin2(ωx+φ)=A2-A2cos(2ωx+2φ),
因为y=f(x)的最大值为2,又A>0,
所以A2+A2=2,所以A=2,
又因为其图象相邻两对称轴间的距离为2,ω>0,
所以12×2π2ω=2,所以ω=π4.
所以f(x)=22-22cos(π2x+2φ)=1-cos(π2x+2φ),
因为y=f(x)过点(1,2),所以cos(π2+2φ)=-1.
所以π2+2φ=2kπ+π(k∈Z),
解得φ=kπ+π4(k∈Z),
又因为0<φ<π2,所以φ=π4.
(2)方法一:因为φ=π4,
所以y=1-cos(π2x+π2)=1+sin π2x,
所以f(1)+f(2)+f(3)+f(4)=2+1+0+1=4,
又因为y=f(x)的周期为4,2 008=4×502.
所以f(1)+f(2)+…+f(2 008)=4×502=2 008.
方法二:因为f(x)=2sin2(π4x+φ),
所以f(1)+f(3)=2sin2(π4+φ)+2sin2(3π4+φ)=2,
f(2)+f(4)=2sin2(π2+φ)+2sin2(π+φ)=2,
所以f(1)+f(2)+f(3)+f(4)=4,
又因为y=f(x)的周期为4,2 008=4×502.
所以f(1)+f(2)+…+f(2 008)=4×502=2 008.
【点拨】函数y=Acos(ωx+φ)的对称轴由ωx+φ=kπ,可得x=kπ-φω,两相邻对称轴间的距离为周期的一半,解决该类问题可画出相应的三角函数的图象,借助数形结合的思想解决.
【变式训练3】已知函数f(x)=Acos2 ωx+2(A>0,ω>0)的最大值为6,其相邻两条对称轴间的距离为4,则f(2)+f(4)+f(6)+…+f(20)= .
【解析】f(x)=Acos2ωx+2=A×1+cos 2ωx2+2=Acos 2ωx2+A2+2,则由题意知A+2=6,2π2ω=8,所以A=4,ω=π8,所以f(x)=2cos π4x+4,所以f(2)=4,f(4)=2,f(6)=4,f(8)=6,f(10)=4,…观察周期性规律可知f(2)+f(4)+…+f(20)=2×(4+2+4+6)+4+2=38.
总结提高
1.用“五点法”作y=Asin(ωx+φ)的图象,关键是五个点的选取,一般令ωx+φ=0,π2,π,3π2,2π,即可得到作图所需的五个点的坐标,同时,若要求画出给定区间上的函数图象时,应适当调整ωx+φ的取值,以便列表时能使x在给定的区间内取值.
2.在图象变换时,要注意相位变换与周期变换的先后顺序改变后,图象平移的长度单位是不同的,这是因为变换总是对字母x本身而言的,无论沿x轴平移还是伸缩,变化的总是x.
3.在解决y=Asin(ωx+φ)的有关性质时,应将ωx+φ视为一个整体x后再与基本函数
y=sin x的性质对应求解.
5.7 正弦定理和余弦定理
典例精析
题型一 利用正、余弦定理解三角形
【例1】在△ABC中,AB=2,BC=1,cos C=34.
(1)求sin A的值;(2)求 的值.
【解析】(1)由cos C=34得sin C=74.
所以sin A=BC sin CAB=1×742=148.
(2)由(1)知,cos A=528.
所以cos B=-cos(A+C)=-cos Acos C+sin Asin C
标签: 暂无联系方式 高三数学教案
相关文章