-
教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作
计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案
-
高三数学教案:圆锥曲线经典例题及总结
[10-15 23:09:35] 来源:http://www.xiaozhibei.com 高三数学教案 阅读:9706次解:(1)设B( , ),C( , ),BC中点为( ),F(2,0)则有
两式作差有 (1)
F(2,0)为三角形重心,所以由 ,得 ,由 得 ,代入(1)得
直线BC的方程为
2)由AB⊥AC得 (2)
设直线BC方程为 ,得
,
代入(2)式得
,解得 或
直线过定点(0, ,设D(x,y),则 ,即
所以所求点D的轨迹方程是 。
4、设而不求法
例2、如图,已知梯形ABCD中 ,点E分有向线段 所成的比为 ,双曲线过C、D、E三点,且以A、B为焦点当 时,求双曲线离心率 的取值范围。
分析:本小题主要考查坐标法、定比分点坐标公式、双曲线的概念和性质,推理、运算能力和综合运用数学知识解决问题的能力。建立直角坐标系 ,如图,若设C ,代入 ,求得 ,进而求得 再代入 ,建立目标函数 ,整理 ,此运算量可见是难上加难.我们对 可采取设而不求的解题策略,
建立目标函数 ,整理 ,化繁为简.
解法一:如图,以AB为垂直平分线为 轴,直线AB为 轴,建立直角坐标系 ,则CD⊥ 轴因为双曲线经过点C、D,且以A、B为焦点,由双曲线的对称性知C、D关于 轴对称
依题意,记A ,C ,E ,其中 为双曲线的半焦距, 是梯形的高,由定比分点坐标公式得
,
设双曲线的方程为 ,则离心率
由点C、E在双曲线上,将点C、E的坐标和 代入双曲线方程得
, ①
②
由①式得 , ③
将③式代入②式,整理得
,
故
由题设 得,
解得
所以双曲线的离心率的取值范围为
分析:考虑 为焦半径,可用焦半径公式, 用 的横坐标表示,回避 的计算, 达到设而不求的解题策略.
解法二:建系同解法一, ,
,又 ,代入整理 ,由题设 得,
解得
所以双曲线的离心率的取值范围为
5、判别式法
例3已知双曲线 ,直线 过点 ,斜率为 ,当 时,双曲线的上支上有且仅有一点B到直线 的距离为 ,试求 的值及此时点B的坐标。
分析1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段. 从“有且仅有”这个微观入手,对照草图,不难想到:过点B作与 平行的直线,必与双曲线C相切. 而相切的代数表现形式是所构造方程的判别式 . 由此出发,可设计如下解题思路:
解题过程略.
分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B到直线 的距离为 ”,相当于化归的方程有唯一解. 据此设计出如下解题思路:
简解:设点 为双曲线C上支上任一点,则点M到直线 的距离为:
于是,问题即可转化为如上关于 的方程.
由于 ,所以 ,从而有
于是关于 的方程
由 可知:
方程 的二根同正,故 恒成立,于是 等价于
.
由如上关于 的方程有唯一解,得其判别式 ,就可解得 .
点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性.
例4已知椭圆C: 和点P(4,1),过P作直线交椭圆于A、B两点,在线段AB上取点Q,使 ,求动点Q的轨迹所在曲线的方程.
分析:这是一个轨迹问题,解题困难在于多动点的困扰,学生往往不知从何入手。其实,应该想到轨迹问题可以通过参数法求解. 因此,首先是选定参数,然后想方设法将点Q的横、纵坐标用参数表达,最后通过消参可达到解题的目的.
由于点 的变化是由直线AB的变化引起的,自然可选择直线AB的斜率 作为参数,如何将 与 联系起来?一方面利用点Q在直线AB上;另一方面就是运用题目条件: 来转化.由A、B、P、Q四点共线,不难得到 ,要建立 与 的关系,只需将直线AB的方程代入椭圆C的方程,利用韦达定理即可.
通过这样的分析,可以看出,虽然我们还没有开始解题,但对于如何解决本题,已经做到心中有数.
在得到 之后,如果能够从整体上把握,认识到:所谓消参,目的不过是得到关于 的方程(不含k),则可由 解得 ,直接代入 即可得到轨迹方程。从而简化消去参的过程。
简解:设 ,则由 可得: ,
解之得: (1)
设直线AB的方程为: ,代入椭圆C的方程,消去 得出关于 x的一元二次方程:
(2)
∴
代入(1),化简得: (3)
与 联立,消去 得:
在(2)中,由 ,解得 ,结合(3)可求得
故知点Q的轨迹方程为: ( ).
点评:由方程组实施消元,产生一个标准的关于一个变量的一元二次方程,其判别式、韦达定理模块思维易于想到. 这当中,难点在引出参,活点在应用参,重点在消去参.,而“引参、用参、消参”三步曲,正是解析几何综合问题求解的一条有效通道.
6、求根公式法
例5设直线 过点P(0,3),和椭圆 顺次交于A、B两点,试求 的取值范围.
分析:本题中,绝大多数同学不难得到: = ,但从此后却一筹莫展, 问题的根源在于对题目的整体把握不够. 事实上,所谓求取值范围,不外乎两条路:其一是构造所求变量关于某个(或某几个)参数的函数关系式(或方程),这只需利用对应的思想实施;其二则是构造关于所求量的一个不等关系.
分析1: 从第一条想法入手, = 已经是一个关系式,但由于有两个变量 ,同时这两个变量的范围不好控制,所以自然想到利用第3个变量——直线AB的斜率k. 问题就转化为如何将 转化为关于k的表达式,到此为止,将直线方程代入椭圆方程,消去y得出关于 的一元二次方程,其求根公式呼之欲出.
简解1:当直线 垂直于x轴时,可求得 ;
当 与x轴不垂直时,设 ,直线 的方程为: ,代入椭圆方程,消去 得
解之得
因为椭圆关于y轴对称,点P在y轴上,所以只需考虑 的情形.
当 时, , ,
所以 = = = .
由 , 解得 ,
所以 ,
综上 .
分析2: 如果想构造关于所求量的不等式,则应该考虑到:判别式往往是产生不等的根源. 由判别式值的非负性可以很快确定 的取值范围,于是问题转化为如何将所求量与 联系起来. 一般来说,韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于 不是关于 的对称关系式. 原因找到后,解决问题的方法自然也就有了,即我们可以构造关于 的对称关系式.
简解2:设直线 的方程为: ,代入椭圆方程,消去 得
(*)
则
令 ,则,
在(*)中,由判别式 可得 ,
从而有 ,所以 ,解得 .
结合 得 .
综上, .
点评:范围问题不等关系的建立途径多多,诸如判别式法,均值不等式法,变量的有界性法,函数的性质法,数形结合法等等. 本题也可从数形结合的角度入手,给出又一优美解法.
解题犹如打仗,不能只是忙于冲锋陷阵,一时局部的胜利并不能说明问题,有时甚至会被局部所纠缠而看不清问题的实质所在,只有见微知著,树立全局观念,讲究排兵布阵,运筹帷幄,方能决胜千里.
第三、推理训练:数学推理是由已知的数学命题得出新命题的基本思维形式,它是数学求解的核心。以已知的真实数学命题,即定义、公理、定理、性质等为依据,选择恰当的解题方法,达到解题目标,得出结论的一系列推理过程。在推理过程中,必须注意所使用的命题之间的相互关系(充分性、必要性、充要性等),做到思考缜密、推理严密。通过编写思维流程图来锤炼自己的大脑,快速提高解题能力。
标签: 暂无联系方式 高三数学教案
相关文章