-
教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作
计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案
-
高三理科数学复习教案:排列组合总复习教学案
[10-15 23:19:20] 来源:http://www.xiaozhibei.com 高三数学教案 阅读:9303次12.2 排列与组合
典例精析
题型一 排列数与组合数的计算
【例1】 计算:(1)8!+A66A28-A410;(2) C33+C34+…+C310.
【解析】(1)原式=8×7×6×5×4×3×2×1+6×5×4×3×2×18×7-10×9×8×7=57×6×5×4×3×256×(-89)=-5 130623.
(2)原式=C44+C34+C35+…+C310=C45+C35+…+C310=C46+C36+…+C310=C411=330.
【点拨】在使用排列数公式Amn=n!(n-m)!进行计算时,要注意公式成立的条件:m,n∈N+,m≤n.另外,应注意组合数的性质的灵活运用.
【变式训练1】解不等式 >6 .
【解析】原不等式即9!(9-x)!>6×9!(11-x)!,
也就是1(9-x)!> ,
化简得x2-21x+104>0,
解得x<8或x>13,又因为2≤x≤9,且x∈N*,
所以原不等式的解集为{2,3,4,5,6,7}.
题型二 有限制条件的排列问题
【例2】 3男3女共6个同学排成一行.
(1)女生都排在一起,有多少种排法?
(2)女生与男生相间,有多少种排法?
(3)任何两个男生都不相邻,有多少种排法?
(4)3名男生不排在一起,有多少种排法?
(5)男生甲与男生乙中间必须排而且只能排2位女生,女生又不能排在队伍的两端,有几种排法?
【解析】(1)将3名女生看作一人,就是4个元素的全排列,有A44种排法.又3名女生内部可有A33种排法,所以共有A44•A33=144种排法.
(2)男生自己排,女生也自己排,然后相间插入(此时有2种插法),所以女生与男生相间共有2A33•A33=72种排法.
(3)女生先排,女生之间及首尾共有4个空隙,任取其中3个安插男生即可,因而任何两个男生都不相邻的排法共有A33•A34=144种.
(4)直接分类较复杂,可用间接法.即从6个人的排列总数中,减去3名男生排在一起的排法种数,得3名男生不排在一起的排法种数为A66-A33A44=576种.
(5)先将2个女生排在男生甲、乙之间,有A23种排法.又甲、乙之间还有A22种排法.这样就有A23•A22种排法.然后把他们4人看成一个元素(相当于一个男生),这一元素及另1名男生排在首尾,有A22种排法.最后将余下的女生排在其间,有1种排法.故总排法为A23A22A22=24种.
【点拨】排列问题的本质就是“元素”占“位子”问题,有限制条件的排列问题的限制主要表现在:某些元素“排”或“不排”在哪个位子上,某些元素“相邻”或“不相邻”.对于这类问题,在分析时,主要按照“优先”原则,即优先安排特殊元素或优先满足特殊位子,对于“相邻”问题可用“捆绑法”,对于“不相邻”问题可用“插空法”.对于直接考虑较困难的问题,可以采用间接法.
【变式训练2】把1,2,3,4,5这五个数字组成无重复数字的五位数,并把它们按由小到大的顺序排列构成一个数列.
(1)43 251是这个数列的第几项?
(2)这个数列的第97项是多少?
【解析】(1)不大于43 251的五位数A55-(A44+A33+A22)=88个,即为此数列的第88项.
(2)此数列共有120项,而以5开头的五位数恰好有A44=24个,所以以5开头的五位数中最小的一个就是该数列的第97项,即51 234.
题型三 有限制条件的组合问题
【例3】 要从12人中选出5人去参加一项活动.
(1)A,B,C三人必须入选有多少种不同选法?
(2)A,B,C三人都不能入选有多少种不同选法?
(3)A,B,C三人只有一人入选有多少种不同选法?
(4)A,B,C三人至少一人入选有多少种不同选法?
(5)A,B,C三人至多二人入选有多少种不同选法?
【解析】(1)只须从A,B,C之外的9人中选择2人,C29=36种不同选法.
(2)由A,B,C三人都不能入选只须从余下9人中选择5人,即有C59=C49=126种选法.
(3)可分两步,先从A,B,C三人中选出1人,有C13种选法,再从余下的9人中选4人,有C49种选 法,所以共有C13•C49=378种选法.
(4)可考虑间接法,从12人中选5人共有C512种,再减去A,B,C三人都不入选的情况C59,共有C512-C59=666种选法.
(5)可考虑间接法,从12人中选5人共有C512种,再减去A,B,C三人都入选的情况C29种,所以共有C512-C29=756种选法.
【点拨】遇到至多、至少的有关计数问题,可以用间接法求解.对于有限制条件的问题,一般要根据特殊元素分类.
【变式训练3】四面体的顶点和各棱中点共有10个点.
(1)在其中取4个共面的点,共有多少种不同的取法?
(2)在其中取4个不共面的点,共有多少种不同的取法?
【解析】(1)四个点共面的取法可分三类.第一类:在同一个面上取,共有4C46种;第二类:在一条棱上取三点,再在它所对的棱上取中点,共有6种;第三类:在六条棱的六个中点中取,取两对对棱的4个中点,共有C23=3种.故有69种.
(2)用间接法.共C410-69=141种.
总结提高
解有条件限制的排列与组合问题的思路:
(1)正确选择原理,确定分类或分步计数;
(2)特殊元素、特殊位置优先考虑;
(3)再考虑其余元素或其余位置.
12.3 二项式定理
典例精析
题型一 二项展开式的通项公式及应用
【例1】 已知 的展开式中,前三项系数的绝对值依次成等差数列.
(1)求证:展开式中没有常数项;
(2)求展开式中所有的有理项.
【解析】由题意得2C1n• =1+C2n•( )2,
即n2-9n+8=0,所以n=8,n=1(舍去).
所以Tr+1= •( ) •
=(- )r• • •
=(-1)r• • (0≤r≤8,r∈Z).
(1)若Tr+1是常数项,则16-3r4=0,即16-3r=0,
因为r∈Z,这不可能,所以展开式中没有常数项.
(2)若Tr+1是有理项,当且仅当16-3r4为整数,
又0≤r≤8,r∈Z,所以 r=0,4,8,
即展开式中有三项有理项,分别是T1=x4,T5=358 x,T9=1256 x-2.
【点拨】(1)把握住二项展开式的通项公式,是掌握二项式定理的关键.除通项公式外,还应熟练掌握二项式的指数、项数、展开式的系数间的关系、性质;
(2)应用通项公式求二项展开式的特定项,如求某一项,含x某次幂的项,常数项,有理项,系数最大的项等,一般是应用通项公式根据题意列方程,在求得n或r后,再求所需的项(要注意n和r的数值范围及大小关系);
(3) 注意区分展开式“第r+1项的二项式系数”与“第r+1项的系数”.
【变式训练1】若(xx+ )n的展开式的前3项系数和为129,则这个展开式中是否含有常数项,一次项?如果有,求出该项,如果没有,请说明理由.
www.xiaozhibei.com【解析】由题知C0n+C1n•2+C2n•22=129,
所以n=8,所以通项为Tr+1=Cr8(xx)8-r = ,
故r=6时,T7=26C28x=1 792x,
所以不存在常数项,而存在一次项,为1 792x.
题型二 运用赋值法求值
【例2】(1)已知(1+x)+(1+x)2+…+(1+x)n=a0+a1x+a2x2+…+anxn,且a1+a2+…+an-1=29-n,则n= ;
(2)已知(1-x)n=a0+a1x+a2x2+…+anxn,若5a1+2a2=0,则a0-a1+a2-a3+…+(-1)nan= .
标签: 暂无联系方式 高三数学教案
相关文章