-
教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作
计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案
-
高三理科数学复习教案:排列组合总复习教学案
[10-15 23:19:20] 来源:http://www.xiaozhibei.com 高三数学教案 阅读:9303次【解析】(1)易知an=1,令x=0得a0=n,所以a0+a1+…+an=30.
又令x=1,有2+22+…+2n=a0+a1+…+an=30,
即2n+1-2=30,所以n=4.
(2)由二项式定理得,
a1=-C1n=-n,a2=C2n=n(n-1)2,
代入已知得-5n+n(n-1)=0,所以n=6,
令x=-1得(1+1)6=a0-a1+a2-a3+a4-a5+a6,
即a0-a1+a2-a3+a4-a5+a6=64.
【点拨】运用赋值法求值时应充分抓住代数式的结构特征,通过一些特殊值代入构造相应的结构.
【变式训练2】设(3x-1)8=a0+a1x+a2x2+…+a7x7+a8x8.求a0+a2+a4+a6+a8的值.
【解析】令f(x)=(3x-1)8,
因为f(1)=a0+a1+a2+…+a8=28,
f(-1)=a0-a1+a2-a3+…-a7+a8=48,
所以a0+a2+a4+a6+a8=f(1)+f(-1)2=27×(1+28).
题型三 二项式定理的综合应用
【例3】求证:4×6n+5 n+1-9能被20整除.
【解析】4×6n+5n+1-9=4(6n-1)+5(5n-1)=4[(5+1)n-1]+5[(4+1)n-1]=20[(5n-1+C1n5n-2+…+Cn-1n)+(4n-1+C1n4n-2+…+Cn-1n)],是20的倍数,所以4×6n+5n+1-9能被20整除.
【点拨】用二项式定理证明整除问题时,首先需注意(a+b)n中,a,b中有一个是除数的倍数;其次展开式有什么规律,余项是什么,必须清楚.
【变式训练3】求0.9986的近似值,使误差小于0.001.
【解析】0.9986=(1-0.002)6=1+6×(-0.002)1+15×(-0.002)2+…+(-0.002)6.
因为T3=C26(-0.002)2=15×(-0.002)2=0.000 06<0.001,
且第3项以后的绝对值都小于0.001,
所以从第3项起,以后的项都可以忽略不计.
所以0.9986=(1-0.002)6≈1+6×(-0.002)=1-0.012=0.988.
总结提高
1.利用通项公式可求展开式中某些特定项(如常数项、有理项、二项式系数最大项等),解决这些问题通常采用待定系数法,运用通项公式写出待定式,再根据待定项的要求写出n、r满足的条件,求出n和r,再确定所需的项;
2.赋值法是解决二项展开式的系数和、差问题的一个重要手段;
3.利用二项式定理解决整除问题时,关键是进行合理的变形,使得二项展开式的每一项都成为除数的倍数.对于余数问题,要注意余数的取值范围.
12.4 随机事件的概率与概率的基本性质
典例精析
题型一 频率与概率
【例1】某企业生产的乒乓球被08年北京奥委会指定为乒乓球比赛专用球.日前有关部门对某批产品进行了抽样检测,检查结果如下表所示.
抽取球数n 50 100 200 500 1 000 2 000
优等品数m 45 92 194 470 954 1 902
优等品频率
(1)计算表中乒乓球优等品的频率;
(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)
【解析】(1)依据公式 ,计算出表中乒乓球优等品的频率依次是0.900,0.920,0.970,
0.940,0.954,0.951.
(2)由(1)知,抽取的球数n不同,计算得到的频率值不同,但随着抽取的球数的增多,却都在常数0.950的附近摆动,所以质量检查为优等品的概率为0.950.
【点拨】从表中所给的数据可以看出,当所抽乒乓球较少时,优等品的频率波动很大,但当抽取的球数很大时,频率基本稳定在0.95,在其附近摆动,利用概率的统计定义,可估计该批乒乓球的优等率.
【变式训练1】某篮球运动员在最近几场比赛中罚球的结果如下.
投篮次数n 8 10 12 9 10 16
进球次数m 6 8 9 7 7 12
进球频率
(1)计算表中进球的频率;
(2)这位运动员投篮一次,进球的概率是多少?
【解析】(1)由公式计算出每场比赛该运动员罚球进球的频率依次为:
(2)由(1)知,每场比赛进球的频率虽然不同,但频率总在 附近摆动,可知该运动员进球的概率为 .
题型二 随机事件间的关系
【例2】从一副桥牌(52张)中任取1张.判断下列每对事件是否为互斥事件,是否为对立事件.
(1)“抽出红桃”与“抽出黑桃”;
(2)“抽出红色牌”与“抽出黑色牌”;
(3)“抽出的牌点数为3的倍数”与“抽出的牌点数大于10”.
【解析】(1)是互斥事件但不是对立事件.因为“抽出红桃”与“抽出黑桃”在仅取一张时不可能同时发生,因而是互斥的.同时,不能保证其中必有一个发生,因为还可能抽出“方块”或“梅花”,因此两者不对立.
(2)是互斥事件又是对立事件.因为两者不可同时发生,但其中必有一个发生.
(3)不是互斥事件,更不是对立事件.因为“抽出的牌点数为3的倍数”与“抽出的牌点数大于10”这两个事件有可能同时发生,如抽得12.
【点拨】要区分互斥事件和对立事件的定义.
【变式训练2】抽查10件产品,设事件A:至少有两件次品,则A的对立事件为( )
A.至多两件次品 B.至多一件次品
C.至多两件正品 D.至少两件正品
【解析】根据对立事件的定义得选项B.
题型三 概率概念的应用
【例3】 甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀,统计后,得到如下列联表.
优秀 非优秀 总计
甲 10
乙 30
总计 105
已知从全部105人中随机抽取1人为优秀的概率为 .
(1)请完成上面列联表;
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”(参考数据P(K2>6.635)=0.05);
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10人按2到11进行编号,然后两次掷一枚均匀的骰子,出现的点数之和为被抽取人的编号.试求抽到6号或10号的概率.
【解析】(1)
优秀 非优秀 总计
甲 10 45 55
乙 20 30 50
总计 30 75 105
(2)计算K2的一个观测值
k= =6.109.
因为6.109<6.635,所以没有95%的把握认为成绩与班级有关.
(3)记被抽取人的序号为ζ,
则P(ζ=6)= ,P(ζ=10)= ,
所以P(ζ=6或ζ=10)=P(ζ=6)+P(ζ=10)= = .
【点拨】本题考查概率的概念在实际生活中的应用.
【变式训练3】袋内有35个球,每个球上都记有从1~35中的一个号码,设号码为n的球的重量为 -5n+20克,这些球以等可能性从袋里取出(不受重量、号码的影响).
(1)如果取出1球,试求其重量比号码数大5的概率;
(2)如果任意取出2球,试求它们重量相等的概率.
【解析】(1)由不等式 -5n+20>n+5,得n>15或n<3,
由题意知n=1,2或者n=16,17,…,35,于是所求概率为 .
(2)设第n号和第m号的两个球的重量相等,
其中n
所以(n-m)(n+m-15)=0.
因为n≠m,所以n+m=15,
所以(n,m)=(1,14),(2,13),…,(7,8).
故所求概率为 .
总结提高
1.对立事件是互斥事件的一种特殊情况,是指在一次试验中有且仅有一个发生的两个事件.集合A的对立事件记作 ,从集合的角度来看,事件 所含结果的集合正是全集U中由事件A所含结果组成集合的补集,即A∪ =U,A∩ = .对立事件一定是互斥事件,但互斥事件不一定是对立事件.
事件A、B的和记作A+B,表示事件A、B至少有一个发生.当A、B为互斥事件时,事件A+B是由“A发生而B不发生”以及“B发生而A不发生”构成的.
标签: 暂无联系方式 高三数学教案
相关文章