小智贝文库 :专注文档资料8年,极速海量,用心打造! 首页 |注册 |登录 |帮助

教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作

计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案

当前位置: 小智贝文库中小学教学中考复习中考数学中考数学模拟题初三数学上册第二十四章圆复习题

初三数学上册第二十四章圆复习题

[10-15 23:08:56]   来源:http://www.xiaozhibei.com  中考数学模拟题   阅读:9481

(1)求证:AT平分∠BAC;

(2)若 求⊙O的半径.

测试10  圆和圆的位置关系

学习要求

1.理解两个圆相离、相切(外切和内切)、相交、内含的概念,能利用两圆的圆心距d与两个圆的半径r1和r2之间的关系,讨论两圆的位置关系.

2.对两圆相交或相切时的性质有所了解.

课堂学习检测

一、基础知识填空

1.没有______的两个圆叫做这两个圆相离.当两个圆相离时,如果其中一个圆在另一个圆的______,叫做这两个圆外离;如果其中有一个圆在另一个圆的______,叫做这两个圆内含.

2.____________的两个圆叫做这两个圆相切.这个公共点叫做______.当两个圆相切时,如果其中的一个圆(除切点外)在另一个圆的______,叫做这两个圆外切;如果其中有一个圆(除切点外)在另一个圆的______,叫做这两个圆内切.

3.______的两个圆叫做这两个圆相交,这两个公共点叫做这两个圆的______以这两个公共点为端点的线段叫做两圆的______.

4.设d是⊙O1与⊙O2的圆心距,r1,r2(r1>r2)分别是⊙O1和⊙O2的半径,则

⊙O1与⊙O2外离 d________________________;

⊙O1与⊙O2外切 d________________________;

⊙O1与⊙O2相交 d________________________;

⊙O1与⊙O2内切 d________________________;

⊙O1与⊙O2内含 d________________________;

⊙O1与⊙O2为同心圆 d____________________.

二、选择题

5.若两个圆相切于A点,它们的半径分别为10cm、4cm,则这两个圆的圆心距为(    ).

A.14cm  B.6cm

C.14cm或6cm  D.8cm

6.若相交两圆的半径分别是 和 ,则这两个圆的圆心距可取的整数值的个数是(    ).

A.1 B.2 C.3 D.4

综合、运用、诊断

一、填空题

7.如图,在12×6的网格图中(每个小正方形的边长均为1个单位),⊙A的半径为1,⊙B的半径为2,要使⊙A与静止的⊙B相切,那么⊙A由图示位置需向右平移______个单位.

7题图

8.相交两圆的半径分别是为6cm和8cm,请你写出一个符合条件的圆心距为______cm.

二.解答题

9.已知:如图,⊙O1与⊙O2相交于A,B两点.求证:直线O1O2垂直平分AB.

9题图

10.已知:如图,⊙O1与⊙O2外切于A点,直线l与⊙O1、⊙O2分别切于B,C点,若⊙O1的半径r1=2cm,⊙O2的半径r2=3cm.求BC的长.

点,过A点的割线分别交两圆于D,F点,过B点的割线分别交两圆于H,E点.

12.已知:相交两圆的公共弦的长为6cm,两圆的半径分别为 , ,求这两个圆的圆心距.

拓广、探究、思考

13.如图,工地放置的三根外径是1m的水泥管两两外切,求其最高点到地平面的距离.

14.已知:如图,⊙O1与⊙O2相交于A,B两点,圆心O1在⊙O2上,过B点作两圆的割线CD,射线DO1交AC于E点.

求证:DE⊥AC.

15.已知:如图,⊙O1与⊙O2相交于A,B两点,过A点的割线分别交两圆于C,D,弦CE∥DB,连结EB,试判断EB与⊙O2的位置关系,并证明你的结论.

16.如图,点A,B在直线MN上,AB=11cm,⊙A,⊙B的半径均为1cm.⊙A以每秒2cm的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(cm)与时间t(s)之间的关系式为r=1+t(t≥0).

(1)试写出点A,B之间的距离d(cm)与时间t(s)之间的函数表达式;

(2)问点A出发多少秒时两圆相切?

测试11  正多边形和圆

学习要求

1.能通过把一个圆n(n≥3)等分,得到圆的内接正n边形及外切正n边形.

2.理解正多边形的中心、半径、中心角、边心距的概念,并能进行简单的计算.

课堂学习检测

一、基础知识填空

1.各条边______,并且各个______也都相等的多边形叫做正多边形.

2.把一个圆分成n(n≥3)等份,依次连结各等分点所得的多边形是这个圆的______.

3.一个正多边形的______________叫做这个正多边形的中心;______________叫做正多边形的半径;正多边形每一边所对的______叫做正多边形的中心角;中心到正多边形的一边的__________叫做正多边形的边心距.

4.正n边形的每一个内角等于__________,它的中心角等于__________,它的每一个外角等于______________.

5.设正n边形的半径为R,边长为an,边心距为rn,则它们之间的数量关系是______.这个正n边形的面积Sn=________.

6.正八边形的一个内角等于_______,它的中心角等于_______.

7.正六边形的边长a,半径R,边心距r的比a∶R∶r=_______.

8.同一圆的内接正方形和正六边形的周长比为_______.

二、解答题

9.在下图中,试分别按要求画出圆O的内接正多边形.

(1)正三角形               (2)正方形                (3)正五边形

(4)正六边形               (5)正八边形              (6)正十二边形

综合、运用、诊断

一、选择题

10.等边三角形的外接圆面积是内切圆面积的(    ).

A.3倍 B.5倍 C.4倍 D.2倍

11.已知正方形的周长为x,它的外接圆半径为y,则y与x的函数关系式是(    ).

A.  B.  C.  D.

12.有一个长为12cm的正六边形,若要剪一张圆形纸片完全盖住这个圆形,则这个圆形纸片的半径最小是(    ).

A.10cm B.12cm C.14cm D.16cm

二、解答题

13.已知:如图,正八边形A1A2A3A4A5A6A7A8内接于半径为R的⊙O.

(1)求A1A3的长;(2)求四边形A1A2A3O的面积;(3)求此正八边形的面积S.

14.已知:如图,⊙O的半径为R,正方形ABCD,A′B′C′D分别是⊙O的内接正方形和外切正方形.求二者的边长比AB∶A′B′和面积比S内∶S外.

拓广、探究、思考

15.已知:如图,⊙O的半径为R,求⊙O的内接正六边形、⊙O的外切正六边形的边长比AB∶A′B′和面积比S内∶S外.

测试12  弧长和扇形面积

学习要求

掌握弧长和扇形面积的计算公式,能计算由简单平面图形组合的图形的面积.

课堂学习检测

一、基础知识填空

1.在半径为R的圆中,n°的圆心角所对的弧长l=_______.

2.____________和______所围成的图形叫做扇形.在半径为R的圆中,圆心角为n°的扇形面积S扇形=__________;若l为扇形的弧长,则S扇形=__________.

3.如图,在半径为R的⊙O中,弦AB与 所围成的图形叫做弓形.

当 为劣弧时,S弓形=S扇形-______;

当 为优弧时,S弓形=______+S△OAB.

3题图

4.半径为8cm的圆中,72°的圆心角所对的弧长为______;弧长为8cm的圆心角约为______(精确到1′).

5.半径为5cm的圆中,若扇形面积为 ,则它的圆心角为______.若扇形面积为15cm2,则它的圆心角为______.

6.若半径为6cm的圆中,扇形面积为9cm2,则它的弧长为______.

上一页  [1] [2] [3] [4] [5] [6]  下一页

标签: 暂无联系方式 中考数学模拟题

相关文章