-
教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作
计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案
-
初三数学上册第二十四章圆复习题
[10-15 23:08:56] 来源:http://www.xiaozhibei.com 中考数学模拟题 阅读:9481次二、选择题
7.如图,Rt△ABC中,∠C=90°,AC=8,BC=6,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为( ).
8.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为120°,AB的长为30cm,贴纸部分BD的长为20cm,则贴纸部分的面积为( ).
9.如图,△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上一点,且∠EPF=40°,则圆中阴影部分的面积是( ).
综合、运用、诊断
10.已知:如图,在边长为a的正△ABC中,分别以A,B,C点为圆心, 长为半径作
, , ,求阴影部分的面积.
11.已知:如图,Rt△ABC中,∠C=90°,∠B=30°, 以A点为圆心,AC长为半径作 ,求∠B与 围成的阴影部分的面积.
拓广、探究、思考
12.已知:如图,以线段AB为直径作半圆O1,以线段AO1为直径作半圆O2,半径O1C交半圆O2于D点.试比较 与 的长.
13.已知:如图,扇形OAB和扇形OA′B′的圆心角相同,设AA′=BB′=d. =l1, =l2.
求证:图中阴影部分的面积
测试13 圆锥的侧面积和全面积
学习要求
掌握圆锥的侧面积和全面积的计算公式.
课堂学习检测
一、基础知识填空
1.以直角三角形的一条______所在直线为旋转轴,其余各边旋转形成的曲面所围成的几何体叫做______.连结圆锥______和____________的线段叫做圆锥的母线,圆锥的顶点和底面圆心的距离是圆锥的______.
2.沿一条母线将圆锥侧面剪开并展平,得到圆锥的侧面展开图是一个______.若设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为______,扇形的弧长为______,因此圆锥的侧面积为______,圆锥的全面积为______.
3.Rt△ABC中,∠C=90°,AB=5cm,BC=3cm,以直线BC为轴旋转一周所得圆锥的底面圆的周长是______,这个圆锥的侧面积是______,圆锥的侧面展开图的圆心角是______.
4.若把一个半径为12cm,圆心角为120°的扇形做成圆锥的侧面,则这个圆锥的底面圆的周长是______,半径是______,圆锥的高是______,侧面积是______.
二、选择题
5.若圆锥的底面半径为2cm,母线长为3cm,则它的侧面积为( ).
A.2cm2 B.3cm2 C.6cm2 D.12cm2
6.若圆锥的底面积为16cm2,母线长为12cm,则它的侧面展开图的圆心角为( ).
A.240° B.120° C.180° D.90°
7.底面直径为6cm的圆锥的侧面展开图的圆心角为216°,则这个圆锥的高为( ).
A.5cm B.3cm C.8cm D.4cm
8.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角为( ).
A.120° B.1 80° C.240° D. 300°
综合、运用、诊断
一、选择题
9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r,扇形的半径为R,扇形的圆心角等于90°,则R与r之间的关系是( ).
A.R=2r B.
C.R=3r D.R=4r
10.如图,扇形OAB是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为( ).
A. B.
C. D.
二、解答题
11.如图,矩形ABCD中,AB=18cm,AD=12cm,以AB上一点O为圆心,OB长为半径画 恰与DC边相切,交AD于F点,连结OF.若将这个扇形OBF围成一个圆锥,求这个圆锥的底面积S.
拓广、探究、思考
12.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点.
求在圆锥的侧面上从B点到P点的最短路线的长.
答案与提示
第二十四章 圆
测试1
1.平面,旋转一周,图形,圆心,半径,⊙O,圆O.
2.圆,一中同长也.
3.(1)半径长,同一个圆上,定点,定长,点.
(2)圆心的位置,半径的长短,圆心,半径长.
4.圆上的任意两点,线段,圆心,弦,最长.
5.任意两点间,弧, 圆弧AB,弧AB.
6.任意一条直径,一条弧.
7.大于半圆的弧,小于半圆的弧.
8.等圆.
9.(1)OA,OB,OC;AB,AC,BC,AC; ; 及
(2)40°,50°,90°.
10.(1)提示:在△OAB中,∵OA=OB,∴∠A=∠B.同理可证∠OCD=∠ODC.
又 ∵ ∠AOC=∠OCD-∠A,∠BOD=∠ODC-∠B,∴ ∠AOC=∠BOD.
(2)提示:AC=BD.可作OE⊥CD于E,进行证明.
11.提示:连结OD.不难得出∠C=36°,∠AOC=54°.
12.提示:可分别作线段AB、BC的垂直平分线.
测试2
1.轴,经过圆心的任何一条直线,中心,该圆的圆心.
2.垂直于弦的直径平分弦,并且平分弦所对的两条弧.
3.弦,不是直径,垂直于,弦所对的两条弧.
4.6. 5.8; 6. 7. , 8.2.
9. 10. 11.
12.提示:先将 二等分(设分点为C),再分别二等分 和 .
13.提示:题目中的“问径几何”是求圆材的直径.答:材径二尺六寸.
14.75°或15°.
15.22cm或8cm.
16.(1)作法:①作弦 ⊥CD.
②连结 ,交CD于P点,连结PB.则P点为所求,即使AP+PB最短.
(2)
17.可以顺利通过.
测试3
1.顶点在圆心,角.2. 3.它们所对应的其余各组量也分别相等
4.相等,这两条弦也相等. 5.提示:先证 = .
6.EF=GH.提示:分别作PM⊥EF于M,PN⊥GH于N.
7.55°. 8.C.
9. =3 .提示:设∠COD=α,则∠OPD=2α,∠AOD=3α=3∠BOC.
10.(1)作OH⊥CD于H,利用梯形中位线.
(2)四边形CDEF的面积是定值, =54.
测试4
1.顶点,与圆相交. 2.该弧所对的,一半. 3.同弧或等弧,相等.
4.半圆(或直径),所对的弦. 5.72°,36°,72°,108°.
6.90°,30°,60°,120°. 7.60°,120°.
8.C. 9.B. 10.A. 11.B. 12.A. 13.C.
14.提示:作⊙O的直径 ,连结 .不难得出 =
15.
16.提示:连结AH,可证得∠H=∠C=∠AFH.
17.提示:连结CE.不难得出
18.提示:延长AO交⊙O于N,连结BN,证∠BAN=∠DAC.
19.提示:连结MB,证∠DMB=∠CMB.
测试5
1.外,上,内. 2.以A点为圆心,半径为R的圆A上.
3.连结A,B两点的线段垂直平分线上. 4.不在同一直线上的三个点.
5.内接三角形,外接圆,外心,三边的垂直平分线.
6.内,外,它的斜边中点处. 7. 8. 9.26cm.
标签: 暂无联系方式 中考数学模拟题
相关文章