-
教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作
计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案
-
中考数学一元一次不等式与不等式组试题
[10-15 23:19:38] 来源:http://www.xiaozhibei.com 初三数学试卷 阅读:9162次例:若某户月用电量400度,则需缴电费为
210×0.52+(350-210)×(0.52+0.05)+(400-350)×(0.52+0.30)=230(元)
(1)如果按此方案计算,小华家5月份的电费为l38.84元,请你求出小华家5月份的用电量;
(2)依此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几挡?
【解析】(1)计算出第二档最低用电量的费用进行比较即可;(2)分别计算出第一档最低用电费和第二档最低电费对a值进行讨论.
【答案】解:(1)因为属于第二档最低用电量的费用为:210×0.52+(350-210)×(0.52+0.05)=189(元)>138.84元,所以小华家5月份的用电量属于第二档.
设小华家5月份的用电量为x度,由题意,得210×0.52+(x-210)×(0.52+0.05)=138.84.解得x=262.
答:小华家5月份的用电量262度.
(2)对于a的取值,应分三类讨论:
①当0
②当109.2
③当a>189时,小华家用电量属于第三档.
【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
9. (2012,黔东南州,23)我州某教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案。甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费。如果你是这个部门的负责人,你应选哪家宾馆更实惠些?
.解析:本题中我们不知道教师人数,所以就要分类讨论。.
解:设教师人数为 .
则甲宾馆收费为: ;
则乙宾馆收费为: ;
(1)当 时,两家宾馆一样优惠,收费都是 ;
(2)当 时, 一定成立,甲宾馆更优惠
(3) 时, ,
即 ,甲宾馆更优惠;
(4) 时, ,
即 (人)时,两家宾馆一样优惠;
(5) 时, ,
即 ,乙宾馆更优惠;
答:总之,当x≤35或x=55时,选择两个宾馆是一样的;
当35
当x>55时,选乙宾馆比较便宜.
点评:本题考查了列方程、不等式和分类讨论思想,学生需要理解题意,并作出正确的分类,很多学生不能正确的分类,难度较大.
10. (2012深圳市 21 ,8分) “节能环保,低碳生活”是我们倡导的一种
进价(元/台) 售价(元/台)
电视机 5000 5500
洗衣机 2000 2160
空 调 2400 2700
生活方式。某家电商场计划用 万元购进节能型电
视机、洗衣机和空调共40台。三种家电的进价及售价如右表所示:
(1)在不超出现有资金的前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机数量的三倍,请问商场有哪几种进货方案?
(2)在“2012年消费促进月”促销活动期间,商家针对这三种节能型产品推出“现金购满1000元送50元家电消费券一张、多买多送”的活动,在(1)的条件下,若三种电器在活动期间全部售出,商家预计最多送出消费券多少张?
【解析】:第(1)问,首先,要读懂表格,其次,要用未知数表示三种家电的数量,设购进电视机的数量为 台,则洗衣机的数量为 台,空调的数量为( )台;再次,根据题目中的“计划用 万元购进节能型电视机、洗衣机和空调共40台”,有 ,“购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机数量的三倍”有 ,联立求解即可;第(2)问,建立一次函数模型,求出最多的销售总额方案,却可求最多出送出消费券多少张。
【解答】:(1)解:设购进电视机的数量为 台,则洗衣机的数量为 台,空调的数量为( )台,依题意:
解之得:
由于 为正整数,故 ,
因此有三种方案:
① 电视机8台,洗衣机8台,空调24台;
② 电视机9台,洗衣机9台,空调22台;
③ 电视机10台,洗衣机10台,空调20台
(2)设售价总金额为 元,依题意有:
,故 随 的增大而增大
由于: , 当 ,
有最大值
由于满1000元才能送出一张消费券,故送出消费券的张数为: (张)
答:最多送出送出消费券的张数为130张
【点评】:本题主要考查不等式组的应用及一次函数的应用。第一个解题的关键是设元后,正确的用代数式表示相关的量;第二个关键是根据不等量关系列不等式组;第三个关键是利用一次函数模型求出最值,还要注意结果取整。
11. (2012贵州黔西南州,24,14分)某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表.
A种产品 B种产品
成本(万元/件) 2 5
利润(万元/件) 1 3
(1)若工厂计划获利14万元,问A、B两种产品应分别生产多少件?
(2)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.
【解析】本题考查一元一次方程(或二元一次方程组)、不等式组、一次函数的性质的实际应用.
【答案】(1)设A、B两种产品各x、y件,由题意得
x+y=10x+3y=14,
解得x=8y=2.
A、B两种产品各8、2件.
(2)设A种产品x件,则B种产品(10-x)件,由题意得
2x+5(10―x)≤44x+3(10―x) >14,
解得2≤x<8.
因为x为整数,所以x=2,3,4,5,6,7.
所以,工厂有6种生产方案:
方案①,A种产品2件,则B种产品8件;
方案②,A种产品3件,则B种产品7件;
方案③,A种产品4件,则B种产品6件;
方案④,A种产品5件,则B种产品5件;
方案⑤,A种产品6件,则B种产品4件;
方案⑥,A种产品7件,则B种产品3件.
(3)设A种产品x件时,获得的利润为W万元,则
W=x+3(10―x)=―2x+30.
因为-2<0,所以W随x的增大而减小.
所以,当x=2时,W取得最大值,为26.
所以,生产方案①获利最大,最大利润为26万元.
【点评】本题涉及实际应用,首先理解题意,理清各个量之间的关系,然后根据题目的要求,选择合适的模型建立方程(组)、不等式(组)、函数解决问题.
www.xiaozhibei.com
标签: 暂无联系方式 初三数学试卷
相关文章