-
教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作
计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案
-
2016年浙江中考数学押轴题归总解析
[10-15 23:16:27] 来源:http://www.xiaozhibei.com 初三数学试卷 阅读:9547次①如图1,当P在AC上运动至垂足点D,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小。
最小值为:EP1=BP1﹣BE=BD﹣BE= ﹣2。
②如图2,当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大。
最大值为:EP1=BC+BE=5+2=7。
【考点】旋转的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质。
【分析】(1)由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,又由等腰三角形的性质,即可求得∠CC1A1的度数。
(2)由旋转的性质可得:△ABC≌△A1BC1,易证得△ABA1∽△CBC1,利用相似三角形的面积比等于相似比的平方,即可求得△CBC1的面积。
(3)由①当P在AC上运动至垂足点D,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小;②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,即可求得线段EP1长度的最大值与最小值。
20. (2012浙江义乌12分)如图1,已知直线y=kx与抛物线 交于点A(3,6).
(1)求直线y=kx的解析式和线段OA的长度;
(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?
【答案】解:(1)把点A(3,6)代入y=kx 得;6=3k,即k=2。
∴y=2x。
∴ 。
(2)线段QM与线段QN的长度之比是一个定值,理由如下:
如图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.
①当QH与QM重合时,显然QG与QN重合,
此时 。
②当QH与QM不重合时,
∵QN⊥QM,QG⊥QH不妨设点H,G分别在x、y轴的正半轴上,
∴∠MQH=∠GQN。
又∵∠QHM=∠QGN=90°,∴△QHM∽△QGN。∴ 。
当点P、Q在抛物线和直线上不同位置时,同理可得 。
∴线段QM与线段QN的长度之比是一个定值。
(3)如图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R。
∵∠AOD=∠BAE,∴AF=OF。
∴OC=AC= 。
∵∠ARO=∠FCO=90°,∠AOR=∠FOC,
∴△AOR∽△FOC。∴ 。∴OF= 。
∴点F( ,0)。
设点B(x, ),过点B作BK⊥AR于点K,则△AKB∽△ARF。
∴ ,即 。
解得x1=6,x2=3(舍去)。∴点B(6,2)。
∴BK=6﹣3=3,AK=6﹣2=4。∴AB=5。
在△ABE与△OED中,∵∠BAE=∠BED,∴∠ABE+∠AEB=∠DEO+∠AEB。
∴∠ABE=∠DEO。
∵∠BAE=∠EOD,∴△ABE∽△OED。
设OE=x,则AE= ﹣x ( ),
由△ABE∽△OED得 ,即 。
∴ 。
∴顶点为 。
如图3,当 时,OE=x= ,此时E点有1个;
当 时,任取一个m的值都对应着两个x值,此时E点有2个.
∴当 时,E点只有1个,当 时,E点有2个。
【考点】二次函数综合题,曲线上点的坐标与方程的关系,锐角三角函数定义,相似三角形的判定和性质,二次函数的性质。
【分析】(1)利用待定系数法求出直线y=kx的解析式,根据A点坐标用勾股定理求出线段OA的长度。
(2)如图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H,构造相似三角形△QHM与△QGN,将线段QM与线段QN的长度之比转化为相似三角形的相似比,即 为定值.需要注意讨论点的位置不同时,这个结论依然成立。
(3)由已知条件角的相等关系∠BAE=∠BED=∠AOD,可以得到△ABE∽△OED。在相似三角形△ABE与△OED中,运用线段比例关系之前需要首先求出AB的长度,如图2,可以通过构造相似三角形,或者利用一次函数(直线)的性质求得AB的长度。设OE=x,则由相似边的比例关系可以得到m关于x的表达式 ,这是一个二次函数.借助此二次函数图象(如图3),可见m在不同取值范围时,x的取值(即OE的长度,或E点的位置)有1个或2个。这样就将所求解的问题转化为分析二次函数的图象与性质问题。
www.xiaozhibei.com
标签: 暂无联系方式 初三数学试卷
相关文章