小智贝文库 :专注文档资料8年,极速海量,用心打造! 首页 |注册 |登录 |帮助

教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作

计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案

当前位置: 小智贝文库中小学教学初中学习网初三学习辅导初三数学辅导资料初三数学试卷2016年浙江中考数学押轴题归总解析

2016年浙江中考数学押轴题归总解析

[10-15 23:16:27]   来源:http://www.xiaozhibei.com  初三数学试卷   阅读:9547

如图,每小图2个,顶点在圆上的三角形,如图所示:

延长EO交圆O于点D,连接DF,如图所示,

△FDE即为所求。

∵EF=5,直径ED=10,可得出∠FDE=30°,

∴FD=5 。

则C△EFD=5+10+5 =15+5 ,

由(2)可得C△COB=3+ ,

∴C△EFD:C△COB=(15+5 ):(3+ )=5:1。

【考点】切线的性质,含30度角的直角三角形的性质,锐角三角函数定义,勾股定理,垂径定理,平移、旋转的性质,相似三角形的判定和性质。

【分析】(1)由AE与圆O相切,根据切线的性质得到AE⊥CE,又OB⊥AT,可得出两直角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似可得出△AEC∽△OBC,根据相似三角形的对应角相等可得出所求的角与∠A相等,由∠A的度数即可求出所求角的度数。

(2)在Rt△AEC中,由AE及tanA的值,利用锐角三角函数定义求出CE的长,再由OB⊥MN,根据垂径定理得到B为MN的中点,根据MN的长求出MB的长,在Rt△OBM中,由半径OM=R,及MB的长,利用勾股定理表示出OB的长,在Rt△OBC中,由表示出OB及cos30°的值,利用锐角三角函数定义表示出OC,用OE﹣OC=EC列出关于R的方程,求出方程的解得到半径R的值。

(3)把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有6个。

顶点在圆上的三角形,延长EO与圆交于点D,连接DF,△FDE即为所求。

根据ED为直径,利用直径所对的圆周角为直角,得到△FDE为直角三角形,由∠FDE为30°,利用锐角三角函数定义求出DF的长,表示出△EFD的周长,再由(2)求出的△OBC的三边表示出△BOC的周长,即可求出两三角形的周长之比。

3. (2012浙江湖州10分)为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.

(1)求乙、丙两种树每棵各多少元?

(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?

(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?

【答案】解:(1)已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,

∴乙种树每棵200元,丙种树每棵 ×200=300(元)。

(2)设购买乙种树x棵,则购买甲种树2x棵,丙种树(1000-3x)棵.

根据题意:200•2x+200x+300(1000-3x)=210000,

解得x=30。

∴2x=600,1000-3x=100,

答:能购买甲种树600棵,乙种树300棵,丙种树100棵。

(3)设购买丙种树y棵,则甲、乙两种树共(1000-y)棵,

根据题意得:200(1000-y)+300y≤210000+10120,

解得:y≤201.2。

∵y为正整数,∴y最大为201。

答:丙种树最多可以购买201棵。

【考点】一元一次方程和一元一次不等式的应用。

【分析】(1)利用已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,即可求出乙、丙两种树每棵钱数。

(2)设购买乙种树x棵,则购买甲种树2x棵,丙种树(1000-3x)棵,利用(1)中所求树木价格以及现计划用210000元资金购买这三种树共1000棵,得出等式方程,求出即可。

(3)设购买丙种树y棵,则甲、乙两种树共(1000-y)棵,根据题意列不等式,求出即可。

4. (2012浙江湖州12分)如图1,已知菱形ABCD的边长为 ,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(- ,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.

(1)求这条抛物线的函数解析式;

(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0

①是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值;若不存在,请说明理由;

②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)

【答案】解:(1)由题意得AB的中点坐标为(-3 ,0),CD的中点坐标为(0,3),

分别代入y=ax2+b,得 ,解得, 。

∴这条抛物线的函数解析式为y=-x2+3。

(2)①存在。如图2所示,在Rt△BCE中,∠BEC=90°,BE=3,BC= ,

∴ 。∴∠C=60°,∠CBE=30°。∴EC= BC= ,DE= 。

又∵AD∥BC,∴∠ADC+∠C=180°。∴∠ADC=180°-60°=120°

要使△ADF与△DEF相似,则△ADF中必有一个角为直角。

(I)若∠ADF=90°,∠EDF=120°-90°=30°。

在Rt△DEF中,DE= ,得EF=1,DF=2。

又∵E(t,3),F(t,-t2+3),∴EF=3-(-t2+3)=t2。∴t2=1。

∵t>0,∴t=1 。

此时 ,∴ 。

又∵∠ADF=∠DEF,∴△ADF∽△DEF。

(II)若∠DFA=90°,可证得△DEF∽△FBA,则 。

设EF=m,则FB=3-m。

∴ ,即m2-3m+6=0,此方程无实数根。∴此时t不存在。

(III)由题意得,∠DAF<∠DAB=60°,∴∠DAF≠90°,此时t不存在。

综上所述,存在t=1,使△ADF与△DEF相似。

② 。

【考点】二次函数综合题,曲线上点的坐标与方程的关系,菱形的性质,平移的性质,勾股定理,锐角三角函数定义,特殊角的三角函数值,平行的性质,相似三角形的判定,解方程和不等式。

【分析】(1)根据已知条件求出AB和CD的中点坐标,然后利用待定系数法求该二次函数的解析式。

(2)①如图2所示,△ADF与△DEF相似,包括三种情况,需要分类讨论:

(I)若∠ADF=90°时,△ADF∽△DEF,求此时t的值。

(II)若∠ADF=90°时,△DEF∽△FBA,利用相似三角形的对应边成比例可以求得相应的t的值。

(III)∠DAF≠90°,此时t不存在。

②画出旋转后的图形,认真分析满足题意要求时,需要具备什么样的限制条件,然后根据限制条件列出不等式,求出t的取值范围:

如图3所示,依题意作出旋转后的三角形△FE′C′,过C′作MN⊥x轴,分别交抛物线、x轴于点M、点N。

观察图形可知,欲使△FE′C′落在指定区域内,必须满足:EE′≤BE且MN≥C′N。

∵F(t,3-t2),∴EF=3-(3-t2)=t2。∴EE′=2EF=2t2。

由EE′≤BE,得2t2≤3,解得 。

又∵C′E′=CE= ,∴C′点的横坐标为t- 。∴MN=3-(t- )2,

又C′N=BE′=BE-EE′=3-2t2,

∴由MN≥C′N,得3-(t- )2≥3-2t2,即t2+2 t-3≥0。

求出t2+2 t-3=0,得 ,∴t2+2 t-3≥0即 。

∵ ,∴ ,解得t≥ 。

∴t的取值范围为: 。

5. (2012浙江嘉兴、舟山12分)将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]  下一页

标签: 暂无联系方式 初三数学试卷

相关文章