小智贝文库 :专注文档资料8年,极速海量,用心打造! 首页 |注册 |登录 |帮助

教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作

计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案

当前位置: 小智贝文库中小学教学初中学习网初三学习辅导初三数学辅导资料初三数学试卷2016年浙江中考数学押轴题归总解析

2016年浙江中考数学押轴题归总解析

[10-15 23:16:27]   来源:http://www.xiaozhibei.com  初三数学试卷   阅读:9547

∴点M随线段BC运动所围成的封闭图形的周长为16+4π。

②存在。如图,由A(4,0),D(0,2), 得 。

(i)∵M1H1=M2H2=2,

∴只要AH1=AH2=1, 就有△AOD∽△M1H1A和△AOD∽△M2H2A,此时OH1=5,OH2=3。

∵点M为线段BC的中点, BC=4,

∴OH1=5时,m=3;OH2=3时,m=1。

(ii)显然,当点M3与点D重合时,△AOD∽△AH3M3,此时m=-2, 与题设m≥0不符。

(iii)当点M4右侧圆弧上时,连接FM4,其中点F是圆弧的圆心,坐标为(6,0)。

设OH4=x, 则FH4= x-6。

又FM4=2,∴ 。

若△AOD∽△A H2M2,则 ,即 ,

解得 (不合题意,舍去)。此时m= 。

若△AOD∽△M2H2 A,则 ,即 ,

解得 (不合题意,舍去)。

此时 ,点M4在圆弧的另一半上,不合题意,舍去。

综上所述,使以A、M、H为顶点的三角形与△AOD相似的m的值为:m=1,m=3,m= 。

【考点】新定义,点到直线的距离,两平行线间的距离,勾股定理,求函数关系式,图形的平移性质,相似三角形的判定和性质。

【分析】(1)根据定义,当m=2,n=2时,线段BC与线段OA的距离是点A到BC的距离2。当m=5,n=2时,线段BC与线段OA的距离(即线段AB的长) 可由勾股定理求出: 。

(2)分2≤m<4和4≤m≤6两种情况讨论即可。

(3)①由(2)找出点M随线段BC运动所围成的封闭图形即可。

②由(2)分点M在线段上和圆弧上两种情况讨论即可。

17. (2012浙江温州12分)温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将 件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示。设安排 件产品运往A地。

(1)当 时,

①根据信息填表:

A地 B地 C地 合计

产品件数(件)

200

运费(元) 30

②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?

(2)若总运费为5800元,求 的最小值。

【答案】解:(1)①根据信息填表

A地 B地 C地 合计

产品件数(件)

200

运费(元) 30

②由题意,得 ,解得40≤x≤ 。

∵x为整数,∴x=40或41或42。

∴有三种方案,分别是

(i)A地40件,B地80件,C地80件;

(ii)A地41件,B地77件,C地82件;

(iii)A地42件,B地74件,C地84件。

(2)由题意,得30x+8(n-3x)+50x=5800,整理,得n=725-7x.

∵n-3x≥0,∴x≤72.5。

又∵x≥0,∴0≤x≤72.5且x为整数。

∵n随x的增大而减少,∴当x=72时,n有最小值为221。

【考点】一次函数的应用,一元一次不等式组的应用。

【分析】(1)①运往B地的产品件数=总件数n-运往A地的产品件数-运往B地的产品件数;运费=相应件数×一件产品的运费。

②根据运往B地的件数不多于运往C地的件数,总运费不超过4000元列出不等式组,求得整数解的个数即可。

(2)总运费=A产品的运费+B产品的运费+C产品的运费,从而根据函数的增减性得到的x的取值求得n的最小值即可。

18. (2012浙江温州14分)如图,经过原点的抛物线 与x轴的另一个交点为A.过点 作直线 轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连结CB,CP。

(1)当 时,求点A的坐标及BC的长;

(2)当 时,连结CA,问 为何值时CA⊥CP?

(3)过点P作PE⊥PC且PE=PC,问是否存在 ,使得点E落在坐标轴上?若存在,求出所有满足要求的 的值,并写出相对应的点E坐标;若不存在,请说明理由。

【答案】解:(1)当m=3时,y=-x2+6x。

令y=0得-x2+6x=0,解得,x1=0,x2=6。∴A(6,0)。

当x=1时,y=5。∴B(1,5)。

∵抛物线y=-x2+6x的对称轴为直线x=3,且B,C关于对称轴对称,∴BC=4。

(2)过点C作CH⊥x轴于点H(如图1)

由已知得,∠ACP=∠BCH=90°,∴∠ACH=∠PCB。

又∵∠AHC=∠PBC=90°,∴△AGH∽△PCB。

∴ 。

∵抛物线y=-x2+2mx的对称轴为直线x=m,其中m>1,且B,C关于对称轴对称,

∴BC=2(m-1)。

∵B(1,2m-1),P(1,m),∴BP=m-1。

又∵A(2m,0),C(2m-1,2m-1),∴H(2m-1,0)。

∴AH=1,CH=2m-1,

∴ ,解得m= 。

(3)存在。∵B,C不重合,∴m≠1。

(I)当m>1时,BC=2(m-1),PM=m,BP=m-1,

(i)若点E在x轴上(如图1),

∵∠CPE=90°,∴∠MPE+∠BPC=∠MPE+∠MEP=90°,PC=EP。

∴△BPC≌△MEP,∴BC=PM,即2(m-1)=m,解得m=2。

此时点E的坐标是(2,0)。

(ii)若点E在y轴上(如图2),过点P作PN⊥y轴于点N,

易证△BPC≌△NPE,

∴BP=NP=OM=1,即m-1=1,解得,m=2。

此时点E的坐标是(0,4)。

(II)当0

(i)若点E在x轴上(如图3),

易证△BPC≌△MEP,

∴BC=PM,即2(1-m)=m,解得,m= 。

此时点E的坐标是( ,0)。

(ii)若点E在y轴上(如图4),

过点P作PN⊥y轴于点N,易证△BPC≌△NPE,

∴BP=NP=OM=1,即1-m=1,∴m=0(舍去)。

综上所述,当m=2时,点E的坐标是(0,2)或(0,4),

当m= 时,点E的坐标是( ,0)。

【考点】二次函数综合题,曲线上点的坐标与方程的关系,二次函数的性质,相似三角形的判定和性质,全等三角形的判定和性质。

【分析】(1)把m=3,代入抛物线的解析式,令y=0解方程,得到的非0解即为和x轴交点的横坐标,再求出抛物线的对称轴方程,从而求出BC的长。

(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°,利用已知条件证明

△AGH∽△PCB,根据相似的性质得到: ,再用含有m的代数式表示出BC,CH,BP,代入比例式即可求出m的值。

(3)存在。本题要分当m>1时,BC=2(m-1),PM=m,BP=m-1和当0

19. (2012浙江义乌10分)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.

(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;

(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;

(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.

【答案】解:(1)∵由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,

∴∠CC1B=∠C1CB=45°。

∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°。

(2)∵由旋转的性质可得:△ABC≌△A1BC1,

∴BA=BA1,BC=BC1,∠ABC=∠A1BC1。

∴ ,∠ABC+∠ABC1=∠A1BC1+∠ABC1。∴∠ABA1=∠CBC1。

∴△ABA1∽△CBC1。∴ 。

∵S△ABA1=4,∴S△CBC1= 。

(3)过点B作BD⊥AC,D为垂足,

∵△ABC为锐角三角形,∴点D在线段AC上。

在Rt△BCD中,BD=BC×sin45°= 。

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]  下一页

标签: 暂无联系方式 初三数学试卷

相关文章