-
教学频道 小学语文教学 小学数学教学 小学英语教学 小学思想品德 小学音乐 小学美术 小学体育 小学科学 教育范文 班主任工作
计划总结 教学反思 小学家长专区 小升初 初中学习网 高中学习网 中考复习 高考复习 中小学试卷 中小学课件 中小学教案
-
2016年浙江中考数学押轴题归总解析
[10-15 23:16:27] 来源:http://www.xiaozhibei.com 初三数学试卷 阅读:9547次结束时,S△MPQ=S△BCM= S△ABC。
△MPQ的面积大小变化情况是:先减小后增大。故选C。
10. (2012浙江义乌3分)如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1
①当x>0时,y1>y2; ②当x<0时,x值越大,M值越小;
③使得M大于2的x值不存在; ④使得M=1的x值是 或 .
其中正确的是【 】
A.①② B.①④ C.②③ D.③④
【答案】D。
【考点】二次函数的图象和性质。
【分析】①∵当x>0时,利用函数图象可以得出y2>y1。∴此判断错误。
②∵抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2,
若y1≠y2,取y1、y2中的较小值记为M。
∴当x<0时,根据函数图象可以得出x值越大,M值越大。∴此判断错误。
③∵抛物线y1=﹣2x2+2,直线y2=2x+2,与y轴交点坐标为:(0,2),
当x=0时,M=2,抛物线y1=﹣2x2+2,最大值为2,故M大于2的x值不存在;∴此判断正确。
④ ∵使得M=1时,
若y1=﹣2x2+2=1,解得:x1= ,x2=﹣ ;
若y2=2x+2=1,解得:x=﹣ 。
由图象可得出:当x= >0,此时对应y1=M。
∵抛物线y1=﹣2x2+2与x轴交点坐标为:(1,0),(﹣1,0),
∴当﹣1
∴M=1时,x= 或x=﹣ 。∴此判断正确。
因此正确的有:③④。故选D。
二、填空题
1. (2012浙江杭州4分)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为 ▲ .
【答案】(﹣1,1),(﹣2,﹣2)。
【考点】利用轴对称设计图案。
【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,把A进行移动可得到点的坐标:
如图所示:A′(﹣1,1),A″(﹣2,﹣2)。
2. (2012浙江湖州4分)如图,将正△ABC分割成m个边长为1的小正三角形和一个黑色菱形,这个黑色菱形可分割成n个边长为1的小三角形,若 ,则△ABC的边长是 ▲
【答案】12。
【考点】一元二次方程的应用(几何问题),菱形的性质,等边三角形的性质,锐角三角函数定义。
【分析】设正△ABC的边长为x,则由勾股定理,得高为 , 。
∵所分成的都是正三角形,
∴根据锐角三角函数定义,可得黑色菱形的较长的对角线为 ,较短的对角线为 。
∴黑色菱形的面积= 。
∴ ,整理得,11x2-144x+144=0。
解得 (不符合题意,舍去),x2=12。
所以,△ABC的边长是12。
3. (2012浙江、舟山嘉兴5分)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交GD、CA于点E、F,与过点A且垂直于的直线相交于点G,连接DF.给出以下四个结论:
① ;②点F是GE的中点;③AF= AB;④S△ABC=5S△BDF,其中正确的结论序号是 ▲ .
【答案】①③。
【考点】相似三角形的判定和性质,勾股定理,等腰直角三角形的性质。
【分析】∵在Rt△ABC中,∠ABC=90°,∴AB⊥BC。
又∵AG⊥AB,∴AG∥BC。∴△AFG∽△CFB。∴ 。
∵BA=BC,∴ 。故①正确。
∵∠ABC=90°,BG⊥CD,∴∠DBE+∠BDE=∠BDE+∠BCD=90°。∴∠DBE=∠BCD。
∵AB=CB,点D是AB的中点,∴BD= AB= CB。∴ 。
又∵BG丄CD,∴∠DBE=∠BCD。∴在Rt△ABG中, 。
∵ ,∴FG= FB。故②错误。
∵△AFG∽△CFB,∴AF:CF=AG:BC=1:2。∴AF= AC。
∵AC= AB,∴AF= AB。故③正确。
设BD= a,则AB=BC=2 a,△BDF中BD边上的高= 。
∴S△ABC= , S△BDF
∴S△ABC=6S△BDF,故④错误。
因此,正确的结论为①③。
4. (2012浙江丽水、金华4分)如图,在直角梯形ABCD中,∠A=90°,∠B=120°,AD= ,AB=6.在底边AB上取点E,在射线DC上取点F,使得∠DEF=120°.
(1)当点E是AB的中点时,线段DF的长度是 ▲ ;
(2)若射线EF经过点C,则AE的长是 ▲ .
【答案】6;2或5。
【考点】直角梯形的性质,勾股定理,解直角三角形。
【分析】(1)如图1,过E点作EG⊥DF,∴EG=AD= 。
∵E是AB的中点,AB=6,∴DG=AE=3。
∴∠DEG=60°(由三角函数定义可得)。
∵∠DEF=120°,∴∠FEG=60°。
∴tan60°= ,解得,GF=3。
∵EG⊥DF,∠DEG=∠FEG,∴EG是DF的中垂线。∴DF=2 GF=6。1世纪教育网
(2)如图2,过点B作BH⊥DC,延长AB至点M,过点C作CF⊥AB于F,则BH=AD= 。
∵∠ABC=120°,AB∥CD,∴∠BCH=60°。
∴CH= ,BC= 。
设AE=x,则BE=6-x,
在Rt△ADE中,DE= ,
在Rt△EFM中,EF= ,
∵AB∥CD,∴∠EFD=∠BEC。
∵∠DEF=∠B=120°,∴△EDF∽△BCE。
∴ ,即 ,解得x=2或5。
5. (2012浙江宁波3分)如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2 ,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为 ▲ .
【答案】 。
【考点】垂线段的性质,垂径定理,圆周角定理,解直角三角形,锐角三角函数定义,特殊角的三角函数值。
【分析】由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,此时线段EF=2EH=20E•sin∠EOH=20E•sin60°,当半径OE最短时,EF最短。如图,连接OE,OF,过O点作OH⊥EF,垂足为H。
∵在Rt△ADB中,∠ABC=45°,AB=2 ,
∴AD=BD=2,即此时圆的直径为2。
由圆周角定理可知∠EOH= ∠EOF=∠BAC=60°,
∴在Rt△EOH中,EH=OE•sin∠EOH=1× 。
由垂径定理可知EF=2EH= 。
6. (2012浙江衢州4分)如图,已知函数y=2x和函数 的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则满足条件的P点坐标是 ▲ .
【答案】(0,﹣4),(﹣4,﹣4),(4,4)。
【考点】反比例函数综合题,平行四边形的性质。
【分析】先求出B、O、E的坐标,再根据平行四边形的性质画出图形,即可求出P点的坐标:
如图,∵△AOE的面积为4,函数 的图象过一、三象限,∴k=8。
∴反比例函数为
∵函数y=2x和函数 的图象交于A、B两点,
∴A、B两点的坐标是:(2,4)(﹣2,﹣4),
∵以点B、O、E、P为顶点的平行四边形共有3个,
标签: 暂无联系方式 初三数学试卷
相关文章